Microsoft Office 365 Excel - Web Add-in - Consulting Practice

Cognitive Convergence is Subject Matter Expert in
Office 365, Dynamics 365, SharePoint, Project Server,
Power Platform: Power Apps-Power Bl-Power
Automate-Power Virtual Agents.

Our Microsoft Office 365 Consulting, add-in
Development, Customization, Integration services and
solutions, can help companies maximize business
performance, overcoming market challenges, achieving
profitability and providing best customer service.

CONTENTS

Objective 1
Introduction 1
Benefits of using excel add-in 1
Components of an Excel add-in 1
Capabilities of an Excel add-in 2
Add-in commands 2
Task panes 3
Custom functions 3
Dialog boxes 4
Content add-ins 5
Excel JavaScript API 5
Asynchronous nature of Excel APIs 6
Excelrun 6
Run options 7
Request context 7
Proxy objects 8
sync() 9
Load() 10
Word package 11
Functions 19
create the add-in 20

method 1 - Office 365 Excel web addin - Yeoman Generator — Visual Code 20

Prerequisites 20

Create the add-in project 20

Explore the project 21

Try it out. 21

method 2 - Office 365 Excel web addin - Visual Studio............. 24
Prerequisites 24
Create the add-in project 24
Update the code 24
Update the manifest 27
Try it out. 27
Deployment of Addin 28
Centralized Deployment 28
Deploy on Web 31
Deploy on Desktop 31

How are Office Add-ins different from COM and VSTO add-ins?32

Examples of excel web add-in in appsource......rmrreennnn. 33
Excel Importer 33
Intrinio Screener for Excel 33
Facebook Ads Manager for Excel 34
Conclusion 34

Contact Us 35

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

OBIJECTIVE

In this case study, a brief introduction will be discussed about the Microsoft Excel Web Add-in Practices, its basic
structure & architecture, components & the benefits of using the Excel web add-in

INTRODUCTION

An Excel add-in allows the users to extend Excel application functionality across multiple platforms including
Windows, Mac, iPad, and in a browser. Use Excel add-ins within a workbook to:

e Interact with Excel objects, read and write Excel data.

e Extend functionality using web-based task pane or content pane
e Add custom ribbon buttons or contextual menu items

e Add custom functions

e Provide richer interaction using a dialog window

BENEFITS OF USING EXCEL ADD-IN

The Office Add-ins platform provides the framework and Office.js JavaScript APIs that enable the users to create and
run Excel add-ins. By using the Office Add-ins platform to create the required Excel add-in, users will get the following
benefits:

e Cross-platform support: Excel add-ins run in Office on the web, Windows, Mac, and iPad.

e Centralized deployment: Admins can quickly and easily deploy Excel add-ins to users throughout an
organization.

e Use of standard web technology: Create your Excel add-in using familiar web technologies such as HTML,
CSS, and JavaScript.

e Distribution via AppSource: Share your Excel add-in with a broad audience by publishing it to AppSource.

COMPONENTS OF AN EXCEL ADD-IN

An Excel add-in includes two basic components: a web application and a configuration file called a manifest file.

The web application uses the Office JavaScript API to interact with objects in Excel, and can also facilitate interaction
with online resources. For example, an add-in can perform any of the following tasks:

e Create, read, update, and delete data in the workbook (worksheets, ranges, tables, charts, named items, and
more).

e Perform user authorization with an online service by using the standard OAuth 2.0 flow.

e Issue API requests to Microsoft Graph or any other API.

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

The web application can be hosted on any web server and can be built using client-side frameworks (such as Angular,
React, jQuery) or server-side technologies (such as ASP.NET, Node.js, PHP).

The manifest is an XML configuration file that defines how the add-in integrates with Office clients by specifying
settings and capabilities such as:

e The URL of the add-in's web application.
e The add-in's display name, description, ID, version, and default locale.

e How the add-in integrates with Excel, including any custom Ul that the add-in creates (ribbon buttons,
context menus, and so on).

e Permissions that the add-in requires, such as reading and writing to the document.

To enable end-users to install and use an Excel add-in, you must publish its manifest either to AppSource or to an
add-ins catalog.

CAPABILITIES OF AN EXCEL ADD-IN

In addition to interacting with the content in the workbook, Excel add-ins can add custom ribbon buttons or menu

commands, insert task panes, add custom functions, open dialog boxes, and even embed rich, web-based objects
such as charts or interactive visualizations within a worksheet.

Add-in commands

Add-in commands are Ul elements that extend the Excel Ul and start actions in your add-in. You can use add-in
commands to add a button on the ribbon or an item to a context menu in Excel. When users select an add-in
command, they initiate actions such as running JavaScript code or showing a page of the add-in in a task pane.

H ©- . Add-in_Commandsxisx - Excel

File Home Insert Draw Page Layout Formulas Data Review View Add-ins Help

state [l Revenue Bl Expense B

California 70

Florida 85
Mew York 70
Texas 35
Washington 80

Task panes

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Task panes are interface surfaces that typically appear on the right side of the window within Excel. Task panes give

users access to interface controls that run code to modify the Excel document or display data from a data source.

1/1/2007 BMW
1/1/2008 BMW
1/1/2009 BMW
1/1/2010 BMW
1/1/2011 BMW
1/1/2007 BMW
1/1/2007 BMW
1/1/2008 BMW
1/1/2009 BMW
1/1/2010 BMW
1/1/2011 BMW
1/1/2008 BMW
1/1/2009 BMW
1/1/2010 BMW
1/1/2011 BMW
1/1/2007 MW
1/1/2008 BMW
1/1/2008 BMW
1/1/2010 BMW
1/1/2011 BMW
1/1/2007 BMW
1/1/2008 BMW
1/1/2009 BMW
1/1/2010 BMW
Sheet1

Custom functions

.| Category -

Compact
Compact
Compact
Compact
Compact

Compact

Fullsize

Fullsize
Fullsize
Fullsize
Fullsize
Midsize
Midsize
Midsize
Midsize
Sporty
Sporty
Sporty
Sporty
Sporty
Sporty
Sporty
Sporty
Sporty

Model .' Sales

MW 351
MW 3-Se
BMW 3-Ser
BMW 3-S&1
BMW 3.5&
MW 5-Set

.BMN 7-5=1

BMW 7-5e
BMW 7-5a¢
MW 7-Ser
BMW 7-Ser
BMW 5-5&¢
BMW 5-5e1
MW 5-5er
BMW 5 Ser
BMW 6-5er
MW 6-Set
BMW 6-5et
BMW 6-Set
BMW 6-5er
aMw 24

aMw 24

aMw 24

BMW 28

14249000
11246400
90960.00
100910.00
9437100
54142 00
14773.00
12276.00
925400
1225300
11299.00
45915.00
4010900
39488.00
51491.00
9033.00
6533.00
3549.00
241800
3903.00
10097 .00
$879.00
3523.00
3804 00

Custom functions enable developers to add new functions to Excel by defining those functions in JavaScript as part of

an add-in. Users within Excel can access custom functions just as they would any native function in Excel, such

as SUM().

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Dialog boxes

Dialog boxes are surfaces that float above the active Excel application window. You can use dialog boxes for tasks
such as displaying sign-in pages that can't be opened directly in a task pane, requesting that the user confirm an
action, or hosting videos that might be too small if confined to a task pane.

- - Add-in_Dialogadsx - Saved

Home Insert Draw Page Layoul Formulas Data Review View Add-ins Help Team Script Lab

Sheet

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Content add-ins

Content add-ins are surfaces that you can embed directly into Excel documents. You can use content add-ins to
embed rich, web-based objects such as charts, data visualizations, or media into a worksheet or to give users access
to interface controls that run code to modify the Excel document or display data from a data source. Use content
add-ins when you want to embed functionality directly into the document.

H ©- Content_Add-inxisx - Excel

Home Insert Draw Page Layout Formulas Data Review View Add-ins felp Team ScnptLab

N19

A B K

] J
California 70 20 O G Y @
Florida 85 ™ Mudsan By
New York 70 40 CANADA @ t-@u
Texas 35 60 o
Washington 80 20,

1
2
3
4
5
6
7
8
9

W

Legend

Microsoft Office 365 Excel-Web Add-in - Consulting Practice _

EXCEL JAVASCRIPT API

This part describes the core concepts that are fundamental to using the APl and guides performing specific tasks such
as reading or writing to a large range, updating all cells in the range, and more.

Asynchronous nature of Excel APIs

The web-based Excel add-ins run inside a browser container that is embedded within the Office application on
desktop-based platforms such as Office on Windows and runs inside an HTML iFrame in Office on the web. Enabling
the Office.js API to interact synchronously with the Excel host across all supported platforms is not feasible due to
performance considerations. Therefore, the sync() API call in Office.js returns a promise that is resolved when the Excel
application completes the requested read or write actions.

Excel.run

Excel.run executes a function where you specify the actions to perform against the Excel object

model. Excel.run automatically creates a request context that you can use to interact with Excel objects.

When Excel.run completes, a promise is resolved, and any objects that were allocated at runtime are automatically
released. The following example shows how to use Excel.run. The catch statement catches and logs errors that occur
within the Excel.run.

JavaScript

Excel.run((context) {

}) .catch(

.log('error: ' + error);
(error OfficeExtension.Error) {
.log('Debug info: " + .stringify(error.debugInfo));

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Run options

Excel.run has an overload that takes in a RunOptions object. This contains a set of properties that affect platform
behavior when the function runs. The following property is currently supported:

delayForCellEdit: Determines whether Excel delays the batch request until the user exits cell edit mode.
When true, the batch request is delayed and runs when the user exits cell edit mode. When false, the batch
request automatically fails if the user is in cell edit mode (causing an error to reach the user). The default
behavior with no delayForCellEdit property specified is equivalent to when it is false.

JavaScript

Excel.run({ delayForCellEdit: } (context) { ... })

Request context

Excel and the developed add-in run in two different processes. Since they both use different runtime environments,

Excel add-ins require a RequestContext object to connect the add-in to objects in Excel such as worksheets, ranges,
charts, and tables.

Microsoft Office 365 Excel-Web Add-in - Consulting Practice _

PROXY OBJECTS

The Excel JavaScript objects that users declare and use in an add-in are proxy objects. Any methods that user invoke
or properties that user set or load on proxy objects are simply added to a queue of pending commands. When users
call the sync() method on the request context (for example, context.sync()), the queued commands are dispatched to
Excel and run. The Excel JavaScript APl is fundamentally batch-centric. Users can queue up as many changes as you
wish on the request context, and then call the sync() method to run the batch of queued commands.

For example, the following code snippet declares the local JavaScript object selected range to reference a selected
range in the Excel document and then sets some properties on that object. A selected range object is a proxy object,
so the properties that are set and method that is invoked on that object will not be reflected in the Excel document
until your add-in calls context.sync().

JavaScript

selectedRange = context.workbook.getSelectedRange();

selectedRange.format.fill.color = "#4472CA";
selectedRange.format.font.color = "white”;
selectedRange.format.autofitColumns();

Microsoft Office 365 Excel-Web Add-in - Consulting Practice _

sync()

Calling the sync() method on the request context synchronizes the state between proxy objects and objects in the

Excel document. The sync() method runs any commands that are queued on the request context and retrieves values

for any properties that should be loaded on the proxy objects

. The sync() method executes asynchronously and

returns a promise, which is resolved when the sync() method completes.

The following example shows a batch function that defines a local JavaScript proxy object (selectedRange), loads a

property of that object, and then uses the JavaScript Promises pattern to call context.sync() to synchronize the state

between proxy objects and objects in the Excel document.

JavaScript

Excel.run((context) {
selectedRange

€5

s')s

context.sync()

.then(() {

.log('The selecte

d
1

) .catch(

I
L

+ error);

(error)
.log('error: '
(error

.log('Debug info:

context.workbook.getSelectedRange();

+ selectedRange.address);

OfficeEextension.Error) {

+ .stringify(error.debuginfo));

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Load()

Before the reading properties of a proxy object, the user must explicitly load the properties to populate the proxy
object with data from the Excel document, and theIFor example, if the user creates a proxy object to reference a
selected range, and then want to read the selected range's address property, the user needs to load

the address property before the user can read it. To request properties of a proxy object be loaded, call

the load() method on the object and specify the properties to load.en call context.sync().

Just like requests to set properties or invoke methods on proxy objects, requests to load properties on proxy objects
get added to the queue of pending commands on the request context, which will run the next time when user call
the sync() method. Users can queue up as many loads () calls on the request context as necessary. In the following
example, only specific properties of the range are loaded.

wvaScript

Excel.run((context) {
sheetName = 'Sheetl’;

rangeAddress A P
myRange = context.workbook.worksheets.getItem(sheetName).getRange(rangeAddress);

myRange.load([‘address’, ‘format/*', 'format/fill', ‘entireRow’']);

context.sync()
.then(O {
.log (myRange.address);
.log (myRange.format.wrapText);
.log (myRange.format.fill.color);

1);
}) - then(O {
.log('done’);
}) .catch((error) {
.log('Error: ' + error);
(error officekxtension.Error) {
.log('Debug info: " + .stringifty(error.debugInfo));

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

WORD PACKAGE

Represents the Excel application that manages the

Excel.Applicati
xcel.Application workbook.

Excel.AutoFilter Represents the AutoFilter object. AutoFilter turns the values in
the Excel column into specific filters based on the cell contents.

Excel.Binding Represents an Office.js binding that is defined in the workbook.

Excel.BindingCollection Represents the collection of all the binding objects that are part
of the workbook.

Excel.CellValueConditionalFormat Represents a cell value conditional format.

Excel.Chart Represents a chart object in a workbook. To learn more about
the Chart object model, see Work with charts using the Excel
JavaScript API.

Excel.ChartAreaFormat Encapsulates the format properties for the overall chart area.

Excel.ChartAxes Represents the chart axes.

Excel.ChartAxis Represents a single axis in a chart.

Excel.ChartAxisFormat Encapsulates the format properties for the chart axis.

Excel.ChartAxisTitle Represents the title of a chart axis.

Excel.ChartAxisTitleFormat Represents the chart axis title formatting.

Excel.ChartBinOptions Encapsulates the bin options for histogram charts and Pareto
charts.

Excel.ChartBorder Represents the border formatting of a chart element.

Excel.ChartBoxwhiskerOptions Represents the properties of a box and whisker chart.

Excel.ChartCollection A collection of all the chart objects on a worksheet.

Excel.ChartDatalabel Represents the data label of a chart point.

Excel.ChartDatalLabelFormat Encapsulates the format properties for the chart data labels.

Excel.ChartDatalabels Represents a collection of all the data labels on a chart point.

Excel.ChartErrorBars This object represents the attributes for a chart's error bars.

Excel.ChartErrorBarsFormat Encapsulates the format properties for chart error bars.

https://docs.microsoft.com/en-us/javascript/api/excel/excel.autofilter?view=excel-js-preview
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-charts
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-charts

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Excel.ChartFill

Represents the fill formatting for a chart element.

Excel.ChartFont

This object represents the font attributes (font name, font size,
color, etc.) for a chart object.

Excel.ChartFormatString

Represents the substring in chart related objects that contain
text, like ChartTitle object, ChartAxisTitle object, etc.

Excel.ChartGridlines

Represents major or minor gridlines on a chart axis.

Excel.ChartGridlinesFormat

Encapsulates the format properties for chart gridlines.

Excel.ChartLegend

Represents the legend in a chart.

Excel.ChartLegendEntry

Represents the legendEntry in legendEntryCollection.

Excel.ChartLegendEntryCollection

Represents a collection of legendEntries.

Excel.ChartLegendFormat

Encapsulates the format properties of a chart legend.

Excel.ChartLineFormat

Encapsulates the formatting options for line elements.

Excel.ChartMapOptions

Encapsulates the properties for a region map chart.

Excel.ChartPivotOptions

Encapsulates the options for the pivot chart.

Excel.ChartPlotArea

This object represents the attributes for a chart plotArea object.

Excel.ChartPlotAreaFormat

Represents the format properties for chart plotArea.

Excel.ChartPoint

Represents a point of a series in a chart.

Excel.ChartPointFormat

Represents formatting objects for chart points.

Excel.ChartPointsCollection

A collection of all the chart points within a series inside a chart.

Excel.ChartSeries

Represents a series in a chart.

Excel.ChartSeriesCollection

Represents a collection of chart series.

Excel.ChartSeriesFormat

Encapsulates the format properties for the chart series

Excel.ChartTitle

Represents a chart title object of a chart.

Excel.ChartTitleFormat

Provides access to the office art formatting for the chart title.

Excel.ChartTrendline

This object represents the attributes for a chart trendline object.

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Excel.ChartTrendlineCollection

Represents a collection of Chart Trendlines.

Excel.ChartTrendlineFormat

Represents the format properties for chart trendline.

Excel.ChartTrendlineLabel

This object represents the attributes for a chart trendline label
object.

Excel.ChartTrendlineLabelFormat

Encapsulates the format properties for the chart trendline label.

Excel.ColorScaleConditionalFormat

Represents ColorScale criteria for conditional formatting.

Excel.Comment

Represents a comment in the workbook.

Excel.CommentCollection

Represents a collection of comment objects that are part of the
workbook.

Excel.CommentReply

Represents a comment reply in the workbook.

Excel.CommentReplyCollection

Represents a collection of comment reply objects that are part
of the comment.

Excel.ConditionalDataBarNegativeFormat

Represents a conditional format DataBar Format for the
negative side of the data bar.

Excel.ConditionalDataBarPositiveFormat

Represents a conditional format DataBar Format for the
positive side of the data bar.

Excel.ConditionalFormat

An object encapsulating a conditional format's range, format,
rule, and other properties. To learn more about the conditional
formatting object model, read Apply conditional formatting to
Excel ranges.

Excel.ConditionalFormatCollection

Represents a collection of all the conditional formats that
overlap the range.

Excel.ConditionalFormatRule

Represents a rule, for all traditional rule/format pairings.

Excel.ConditionalRangeBorder

Represents the border of an object.

Excel.ConditionalRangeBorderCollection

Represents the border objects that makeup range border.

Excel.ConditionalRangeFill

Represents the background of a conditional range object.

Excel.ConditionalRangeFont

This object represents the font attributes (font style, color, etc.)
for an object.

Excel.ConditionalRangeFormat

A formatting object encapsulating the conditional formats
range's font, fill borders, and other properties.

Excel.Culturelnfo

Provides information based on current system culture settings.
This includes the culture names, number formatting, and other
culturally dependent settings.

Excel.CustomConditionalFormat

Represents a custom conditional format type.

Excel.CustomProperty

Represents a custom property.

https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-conditional-formatting
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-conditional-formatting

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Excel.CustomPropertyCollection

Contains the collection of customProperty objects.

Excel.CustomXmlPart

Represents a custom XML part object in a workbook.

Excel.CustomXmlPartCollection

A collection of custom XML parts.

Excel.CustomXmlPartScopedCollection

A scoped collection of custom XML parts. A scoped collection is
the result of some operation (e.g., filtering by namespace). A
scoped collection cannot be scoped any further.

Excel.DataBarConditionalFormat

Represents an Excel Conditional Data Bar Type.

Excel.DataConnectionCollection

Represents a collection of all the Data Connections that are
part of the workbook or worksheet.

Excel.DataPivotHierarchy

Represents Excel DataPivotHierarchy.

Excel.DataPivotHierarchyCollection

Represents a collection of DataPivotHierarchy items associated
with the PivotTable.

Excel.DataValidation

Represents the data validation applied to the current range. To
learn more about the data validation object model, read Add
data validation to Excel ranges.

Excel.DatetimeFormatinfo

Defines the culturally appropriate format of displaying
numbers. This is based on current system culture settings.

Excel.DocumentProperties

Represents workbook properties.

Excel.Filter

Manages the filtering of a table's column.

Excel.FilterPivotHierarchy

Represents Excel FilterPivotHierarchy.

Excel.FilterPivotHierarchyCollection

Represents a collection of FilterPivotHierarchy items associated
with the PivotTable.

Excel.FormatProtection

Represents the format protection of a range object.

Excel.FunctionResult

An object containing the result of a function-evaluation
operation

Excel.Functions

An object for evaluating Excel functions.

Excel.GeometricShape

Represents a geometric shape inside a worksheet. A geometric
shape can be a rectangle, block arrow, equation symbol,
flowchart item, star, banner, callout, or any other basic shape in
Excel.

Excel.GroupShapeCollection

Represents the shape collection inside a shape group.

Excel.lconSetConditionalFormat

Represents an IconSet criterion for conditional formatting.

Excel.lImage

Represents an image in the worksheet. To get the
corresponding Shape object, use Image.shape.

https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-data-validation
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-data-validation
https://docs.microsoft.com/en-us/javascript/api/excel/excel.datetimeformatinfo?view=excel-js-preview

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Excel.lterativeCalculation

Represents the Iterative Calculation settings.

Excel.Line

Represents a line inside a worksheet. To get the corresponding
Shape object, use Line.shape.

Excel.Namedltem

Represents a defined name for a range of cells or values.
Names can be primitive named objects (as seen in the type
below), range object, or a reference to a range. This object can
be used to obtain a range object associated with names.

Excel.NamedItemArrayValues

Represents an object containing values and types of a named
item.

Excel.NamedltemCollection

A collection of all the Namedltem objects that are part of the
workbook or worksheet, depending on how it was reached.

Excel.NamedSheetView

Represents a named sheet view of a worksheet. A sheet view
stores the sort and filter rules for a particular worksheet. Every
sheet view (even a temporary sheet view) has a unique,
worksheet-scoped name that is used to access the view.

Excel.NamedSheetViewCollection

Represents the collection of sheet views on the worksheet.

Excel.NumberFormatinfo

Defines the culturally appropriate format of displaying
numbers. This is based on current system culture settings.

Excel.Pagelayout

Represents layout and print settings that are not dependent on
any printer-specific implementation. These settings include
margins, orientation, page numbering, title rows, and print
area.

Excel.PivotField

Represents Excel PivotField.

Excel.PivotFieldCollection

Represents a collection of all the PivotFields that are part of a
PivotTable's hierarchy.

Excel.PivotHierarchy

Represents Excel PivotHierarchy.

Excel.PivotHierarchyCollection

Represents a collection of all the PivotHierarchies that are part
of the PivotTable.

Excel.Pivotltem

Represents Excel Pivotltem.

Excel.PivotltemCollection

Represents a collection of all the Pivotltems related to their
parent PivotField.

Excel.PivotLayout

Represents the visual layout of the PivotTable.

Excel.PivotTable

Represents an Excel PivotTable. To learn more about the
PivotTable object model, read Work with PivotTables using the
Excel JavaScript API.

Excel.PivotTableCollection

Represents a collection of all the PivotTables that are part of
the workbook or worksheet.

Excel.PivotTableScopedCollection

Represents a scoped collection of PivotTables. The PivotTables
are sorted based on the location of the PivotTable's top-left
corner. They are ordered top to bottom and then left to right.

https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-pivottables
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-pivottables

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Excel.PivotTableStyle

Represents a PivotTable Style, which defines style elements by
the PivotTable region.

Excel.PivotTableStyleCollection

Represents a collection of PivotTable styles.

Excel.PresetCriteriaConditionalFormat

Represents the preset criteria conditional format such as above
average, below average, unique values contains a blank,
nonblank, error, and no error.

Excel.Range

The range represents a set of one or more contiguous cells
such as a cell, a row, a column, a block of cells, etc. To learn
more about how ranges are used throughout the AP],

read Work with ranges using the Excel JavaScript APl and Work
with ranges using the Excel JavaScript APl (advanced).

Excel.RangeAreas

RangeAreas represents a collection of one or more rectangular
ranges in the same worksheet. To learn how to use
discontiguous ranges, read Work with multiple ranges
simultaneously in Excel add-ins.

Excel.RangeAreasCollection

Contains the collection of cross-worksheets level Ranges.

Excel.RangeBorder

Represents the border of an object.

Excel.RangeBorderCollection

Represents the border objects that make up the range border.

Excel.RangefFill

Represents the background of a range object.

Excel.RangeFont

This object represents the font attributes (font name, font size,
color, etc.) for an object.

Excel.RangeFormat

A formatting object encapsulating the range's font, fill borders,
alignment, and other properties.

Excel.RangeSort

Manages sorting operations on Range objects.

Excel.RangeView

RangeView represents a set of visible cells of the parent range.

Excel.RangeViewCollection

Represents a collection of RangeView objects.

Excel.RemoveDuplicatesResult

Represents the results from the removeDuplicates method on a
range

Excel.RequestContext

The RequestContext object facilitates requests to the Excel
application. Since the Office add-in and the Excel application
run in two different processes, the request context is required
to get access to the Excel object model from the add-in.

Excel.RowColumnPivotHierarchy

Represents Excel RowColumnPivotHierarchy.

Excel.RowColumnPivotHierarchyCollection

Represents a collection of RowColumnPivotHierarchy items
associated with the PivotTable.

Excel.Runtime

Represents the Excel Runtime class.

https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-ranges
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-ranges-advanced
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-ranges-advanced
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-multiple-ranges
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-multiple-ranges

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Excel.Session

Provides a connection session for a remote workbook.

Excel.Setting

The setting represents a key-value pair of a setting persisted to
the document (per file per add-in). These custom key-value
pairs can be used to store state or lifecycle information needed
by the content or task-pane add-in. Note that settings are
persisted in the document and hence it is not a place to store
any sensitive or protected information such as user information
and password.

Excel.SettingCollection

Represents a collection of key-value pair setting objects that
are part of the workbook. The scope is limited to per file and
add-in (task-pane or content) combination.

Excel.Shape

Represents a generic shape object in the worksheet. A shape
could be a geometric shape, a line, a group of shapes, etc. To
learn more about the shape object model, read Work with
shapes using the Excel JavaScript API.

Excel.ShapeCollection

Represents a collection of all the shapes in the worksheet.

Excel.ShapeFill

Represents the fill formatting of a shape object.

Excel.ShapeFont

Represents the font attributes, such as font name, font size, and
color, for a shape's TextRange object.

Excel.ShapeGroup

Represents a shape group inside a worksheet. To get the
corresponding Shape object, use ShapeGroup.shape.

Excel.ShapeLineFormat

Represents the line formatting for the shape object. For images
and geometric shapes, line formatting represents the border of
the shape.

Excel.Slicer

Represents a slicer object in the workbook.

Excel.SlicerCollection

Represents a collection of all the slicer objects on the workbook
or a worksheet.

Excel.Slicerltem

Represents a slicer item in a slicer.

Excel.SlicerltemCollection

Represents a collection of all the slicer item objects on the
slicer.

Excel.SlicerStyle

Represents a Slicer Style, which defines style elements by
region of the slicer.

Excel.SlicerStyleCollection

Represents a collection of SlicerStyle objects.

Excel.Style

An object encapsulating a style's format and other properties.

Excel.StyleCollection

Represents a collection of all the styles.

Excel.Table

Represents an Excel table. To learn more about the table object
model, read Work with tables using the Excel JavaScript API.

Excel.TableCollection

Represents a collection of all the tables that are part of the
workbook or worksheet, depending on how it was reached.

https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-shapes
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-shapes
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-tables

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Excel.TableColumn

Represents a column in a table.

Excel.TableColumnCollection

Represents a collection of all the columns that are part of the
table.

Excel.TableRow

Represents a row in a table.

Note that unlike Ranges or Columns, which will adjust if new
rows/columns are added before them, a TableRow object
represents the physical location of the table row, but not the
data. That is, if the data is sorted or if new rows are added, a
table row will continue to point at the index for which it was
created.

Excel.TableRowCollection

Represents a collection of all the rows that are part of the table.
Note that unlike Ranges or Columns, which will adjust if new
rows/columns are added before them, a TableRow object
represents the physical location of the table row, but not the
data. That is, if the data is sorted or if new rows are added, a
table row will continue to point at the index for which it was
created.

Excel.TableScopedCollection

Represents a scoped collection of tables. For each table, its top-
left corner is considered its anchor location, and the tables are
sorted top to bottom and then left to right.

Excel.TableSort

Manages sorting operations on Table objects.

Excel.TableStyle

Represents a TableStyle, which defines the style elements by
region of the Table.

Excel.TableStyleCollection

Represents a collection of TableStyles.

Excel.TextConditionalFormat

Represents a specific text conditional format.

Excel.TextFrame

Represents the text frame of a shape object.

Excel.TextRange

Contains the text that is attached to a shape, in addition to
properties and methods for manipulating the text.

Excel.TimelineStyle

Represents a Timeline style, which defines style elements by
region in the Timeline.

Excel.TimelineStyleCollection

Represents a collection of TimelineStyles.

Excel.TopBottomConditionalFormat

Represents a Top/Bottom conditional format.

Excel. Workbook

The workbook is the top-level object which contains related
workbook objects such as worksheets, tables, ranges, etc. To
learn more about the workbook object model, read Work with
workbooks using the Excel JavaScript API.

Excel.WorkbookCreated

The WorkbookCreated object is the top-level object created by
Application.CreateWorkbook. A WorkbookCreated object is a
special Workbook object.

https://docs.microsoft.com/en-us/javascript/api/excel/excel.textframe?view=excel-js-preview
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-workbooks
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-workbooks

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Excel.WorkbookProtection Represents the protection of a workbook object.

Excel.WorkbookRangeAreas Represents a collection of one or more rectangular ranges in
multiple worksheets.

Excel.Worksheet An Excel worksheet is a grid of cells. It can contain data, tables,

charts, etc. To learn more about the worksheet object model,
read Work with worksheets using the Excel JavaScript API.

Excel.WorksheetCollection Represents a collection of worksheet objects that are part of
the workbook.

Excel.WorksheetCustomProperty Represents a worksheet-level custom property.

Excel. WorksheetCustomPropertyCollection Contains the collection of the worksheet-level custom property.

Excel.WorksheetProtection Represents the protection of a sheet object.

FUNCTIONS

Creates and opens a new workbook. Optionally, the

Excel.createWorkbook(base64) workbook can be pre-populated with a base64-encoded .xIsx
file.

Excel.run(batch) Executes a batch script that performs actions on the Excel object model,
using a new RequestContext. When the promise is resolved, any tracked
objects that were automatically allocated during execution will be
released.

Excel.run(object, batch) Executes a batch script that performs actions on the Excel object model,
using the RequestContext of a previously-created APl object. When the
promise is resolved, any tracked objects that were automatically
allocated during execution will be released.

Excel.run(objects, batch) Executes a batch script that performs actions on the Excel object model,
using the RequestContext of previously-created API objects.

Excel.run(options, batch) Executes a batch script that performs actions on the Excel object model,
using the RequestContext of a previously-created APl object. When the
promise is resolved, any tracked objects that were automatically
allocated during execution will be released.

Excel.run(context, batch) Executes a batch script that performs actions on the Excel object model,
using the RequestContext of a previously-created object. When the
promise is resolved, any tracked objects that were automatically
allocated during execution will be released.

https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-worksheets

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

CREATE THE ADD-IN

Users can create an Office Add-in by using the Yeoman generator for Office Add-ins or Visual Studio. The Yeoman
generator creates a Node.js project that can be managed with Visual Studio Code or any other editor, whereas Visual
Studio creates a Visual Studio solution.

METHOD 1 - OFFICE 365 EXCEL WEB ADDIN - YEOMAN GENERATOR - VISUAL CODE

Prerequisites

1. Nodejs (the latest LTS version)
2. The latest version of Yeoman and the Yeoman generator for Office Add-ins. To install these tools globally,
run the following command via the command prompt:

npm install -g yo generator-office

Create the add-in project

1. Run the following command to create an add-in project using the Yeoman generator:

command line

yo office

2. When prompted, provide the following information to create your add-in project:
e Choose a project type: Office Add-in Task Pane project

e Choose a script type: Javascript

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

e What do you want to name your add-in? My Office Add-in

e Which Office client application would you like to support? Excel

Welcome to the
1 generator, by

Let's create

a project together!

Choose a project type:

Choose a script type:

What do you want to name your add-in?

Which Office client application would you like to support?

After completing the wizard, the generator creates the project and installs supporting Node components.

Explore the project

The add-in project that the user has just created with the Yeoman generator contains sample code for a very basic
task pane add-in. To explore the components of the add-in project, open the project in the code editor, and review

the files listed below.

e The ./manifest.xml file in the root directory of the project defines the settings and capabilities of the add-in.
e The ./src/taskpane/taskpane.html file contains the HTML markup for the task pane.
e The ./src/taskpane/taskpane.css file contains the CSS that's applied to content in the task pane.

e The ./src/taskpane/taskpane.js file contains the Office JavaScript API code that facilitates interaction between
the task pane and the Office host application.

Try it out

1. Navigate to the root folder of the project.

command line

cd "My office Add-in"

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

2. Complete the following steps to start the local web server and sideload your add-in.

command line

npm run dev-server

a. To test the add-in in Excel, run the following command in the root directory of the project. This
starts the local webserver (if it's not already running) and opens Word with the add-in loaded.

command line

npm start

b. To test the add-in in Excel on a browser, run the following command in the root directory of the
project. When this command runs, the local web server will start (if it's not already running).

command line

npm run start:web

3.1

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

n Excel, choose the Home tab, and then choose the Show Taskpane button in the ribbon to open the add-in

task pane.

1
2
3
4
5
6
7
8
9

wtoSave (@ off) = excel add-in 65304515-b3f5-4abf-940¢c-6¢40...

File Home Inset Draw Pagelayout Formulas Data Review View Team Script Lab

N p E;’Qu whitional Formatting ~ i .
e . e - o ’
tzFormat as Table ~

- Font Alignment rotect Number g Cells deas Show
. 3

Paste BZCell Styles ~

v = . - Taskpane

Commands Group

Clipboard 1= ectioe Styles

Al

l

O oo ~N~NOWw» E WN -

Sheet1

Select any range of cells in the worksheet.
At the bottom of the task pane, choose the Run link to set the color of the selected range to yellow.

atoSave (@ off) = excel add-in 65304515-b3f5-4abf-940c-6c40..

Home Insert Draw Pagelayout Formulas Data Review View Help Team Script Lab

8 (f::{) E'cwctvj“a Formatting + ‘,ﬂ} l(j g

rmat as Table ~
Protect Number BACell Styles ~ Cells Edting |deas Show
N N Taskpane

Styles E mmands Group

My Office Add-in

g] Create and visualize like a pro

Modify the source files, then click Run

Sheet1

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

METHOD 2 - OFFICE 365 EXCEL WEB ADDIN - VISUAL STUDIO

Prerequisites

a. Visual Studio 2019 with the Office/SharePoint development workload installed
b. Office 2016 or later

Create the add-in project

In Visual Studio, choose to Create a new project.

Using the search box, enter add-in. Choose Excel Web Add-in, then select Next.

Name your project and select Create.

In the Create Office Add-in dialog window, choose to Add new functionalities to Excel, and then choose
Finish to create the project.

5. Visual Studio creates a solution and its two projects appear in Solution Explorer. The Home.html file opens in
Visual Studio.

HMwn =

Update the code

1. Home.html specifies the HTML that will be rendered in the add-in's task pane. In Home.html, replace
the <body> element with the following markup and save the file.

id='
class="padding"”
Welcome

Choose the button below to set the color of the selected range to green.

Try it out
class="ms-Button” id="set-c ~">Set color

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

2. Open the file Home,js at the root of the web application project. This file specifies the script for the add-in.
Replace the entire contents with the following code and save the file.

«ascript

Office.onReady(
$() -ready(
$("#set-c

s
P

Excel.run((context) {
range = context.workbook.getSelectedRange();
range.format.fill.color = ‘green’;

context.sync();
}) -catch((error) {
.log("Error: " + error);
{(error OfficeExtension.Error) {
.log("Debug info: " + .stringify(error.debugInfo));

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

3. Open the file Home.css at the root of the web application project. This file specifies the custom styles for the
add-in. Replace the entire contents with the following code and save the file.

#content-header {
ound: #2a8dd4;
: #fT;
tion: absolute;

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Update the manifest

1. Open the XML manifest file in the add-in project. This file defines the add-in's settings and capabilities.
2. The ProviderName element has a placeholder value. Replace it with your name.
3. The DefaultValue attribute of the DisplayName element has a placeholder. Replace it with My Office Add-in.

4. The DefaultValue attribute of the Description element has a placeholder. Replace it with A task pane add-in
for Excel.

5. Save the file.

Providername

e>en-Us</DefaultL

isplay name of . Used on UL such as 1 ins dialog. -->
Defaultvalue= i
n Defaultvalue='

Try it out

1. Using Visual Studio, test the newly created Excel add-in by pressing F5 or choosing the Start button to
launch Excel with the Show Taskpane add-in button displayed in the ribbon. The add-in will be hosted locally
on lIS.

2. In Excel, choose the Home tab, and then choose the Show Taskpane button in the ribbon to open the add-in
task pane.

Bookl - Excel

Page Layout Formulas Data Review View Add-ins Help Team ScriptLlab
F_' Conditional Formatting ~
&' Format as Table ~
(27 Cell Styles +

Styles

1
2
3
4
5
6
7
8
9

w N - O

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

3. Select any range of cells in the worksheet.
4. In the task pane, choose the Set color button to set the color of the selected range to green.

- 2= Book1 - Excel

File Home Insest Draw Pagelayout Formulas Dets Review View Add-ins Help Team Scnptlab Q Tellme

My Office Add-in

Choose the button below to sel
the color of the selected range
to green.

Try it out

[Set color |

DEPLOYMENT OF ADDIN

There are multiple methods of deployment but we have followed the Centralized Deployment.

CENTRALIZED DEPLOYMENT

Follow steps below to publish an Office Add-in via Centralized Deployment:

Sign in to Microsoft 365 with your work or education account.

Select the app launcher icon in the upper-left and choose Admin.

In the navigation menu, press Show more, then choose Settings > Integrated apps.
Choose Add-ins at the top of the page

dPwbh=

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Microsoft 365 admin center £ Search B @& 2 +

®
T
:

Integrated apps
A Users v
G . Discover, purchase, acquire, manage, and deploy Microsoft 365 Apps developed by Microsoft partners.
roups Line-of-business apps developed within your organization are nat displayed here. To manage these apps, go to the respective admin center or page : Azure Active Directory |
% ol SharePaint | Teams | Add-ins
] oles
B Resources v
e i Getapps () Refresh Oitems O Search V Filter =
Billing v
@ Support v
Name Host products Status Test deployment Last modified |
@ Settings ~
Domains

Search & intelligence

Org seftings

| Integrated apps <: No apps have been deployed

Partner relationships Get started by deploying apps

2 s Get apps
I~ Reports v
P Health v

5. Choose Deploy Add-In at the top of the page.
6. Choose Next after reviewing the requirements.
7. Choose Upload Custom apps in the following page.

Deploy a new add-in

Deploy from the Store

Get solutions tailored to your industry that work with the products you already use.
Choose from the Store

Deploy a custom add-in

Create a new web application, or upload an add-in / integration for Office.

Upload custom apps

Cancel

8. Click on Choose file and select Add-in manifest file (.xml)
9. Choose Upload at the end of the task pane

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Deploy a new add-in
Choose how to upload the add-in

@ | have the manifest file {xml) on this device

Choose File UrlShartenerSolutionManifest.xml

O I have a URL for the manifest file

‘ https://

Cancel

10. On the Assign Users page, choose Everyone, Specific Users/Groups, or Only me. Use the search box
to find the users and groups to whom you want to deploy the add-in.

Configure add-in

Url Shortener Solution
By FireLinks

Assign Users
Choose which users will have access to Url Shortener Solution

@ Everyone

O Specific users / groups
Search for specific users or groups to add or remove

| Start typing a name to search for users

O Just me

After you choose ‘Deploy’, the add-in will be available on assigned users’ ribbons the next
time they open their app.

Cancel

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

11. When finished, choose Deploy. This process may take up to three minutes. Then, finish the walkthrough
by pressing Next.

DEPLOY ON WEB

Now the add-in has been deployed in your tenant and you can test it on Excel web application following steps below:

1) Open a new blank document in Excel web application

2) Go to Insert tab

3) Choose Office Add-ins in top navigation

4) Choose Admin managed in the top of Office Add-ins modal
5) Select your deployed add-in from the list

6) Choose Add at the end of the modal

oﬂ:ice Add_l ns Upload My Add-in | @ Refresh

MY ADD-INS | ADMIN MANAGED | STORE

Url Shortener Solution
" FireLinks

+ Ei - 0 C
Bj nd more add-ins at the Office Store. Add Close

DEPLOY ON DESKTOP

You can test the solution on desktop Excel application by following the steps below:

1) Open a new blank document in desktop Excel application

2) Select File > Account

3) If you're not already signed in, click Sign In, else choose Switch account
4) Choose Sign-in with a different account

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

5) Provide login credentials of Office account on which add-in has been deployed in Office 365
6) Follow the steps 2 to 6 from heading “Test on Web"

HOW ARE OFFICE ADD-INS DIFFERENT FROM COM AND VSTO ADD-INS?

COM or VSTO add-ins are earlier Office integration solutions that run only on Office on Windows. Unlike COM
add-ins, Office Add-ins don't involve code that runs on the user's device or in the Office client. For an Office Add-
in, the host application, for example, Excel, reads the add-in manifest and hooks up the add-in's custom ribbon
buttons and menu commands in the Ul. When needed, it loads the add-in's JavaScript and HTML code, which
executes in the context of a browser in a sandbox.

Why use Office Add-ins?

Cross platform Centralized Easy access Built on
(Web, Windows, deployment via AppSource standard web
Mac, iPad) and distribution technologies

9 J
. =

Office Add-ins provide the following advantages over add-ins built using VBA, COM, or VSTO:

e Cross-platform support. Office Add-ins run in Office on the web, Windows, Mac, and iPad.

e Centralized deployment and distribution. Admins can deploy Office Add-ins centrally across an
organization.

e Easy access via AppSource. You can make your solution available to a broad audience by submitting it to
AppSource.

e Based on standard web technology. You can use any library you like to build Office Add-ins.

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

EXAMPLES OF EXCEL WEB ADD-IN IN APPSOURCE

Excel Importer

Company: Theta Systems Limited
App Source:
Description: Features and benefits of using this extension

e Import journals, sales and purchase orders/invoices, sales and vendor prices.
e Import Item Journals with item tracking information (lot and serial number)
e Flexible field mapping to suite column layouts of source data.

e Ability to apply default values to fields which are not present in the source data. For example, defaulting a
quantity or defaulting dimensions specific to the import.

e Ability to translate source data values to correct accounts and dimensions in Business Central. Examples
include:

o Text string to a combination of accounts and dimensions and VAT/GST posting groups.

o Old G/L Account, Customer or Vendor numbers to new numbers.

Intrinio Screener for Excel

Company: Intrinio
App Source: URL

Description: Intrinio Screener for Excel allows you to filter all United States equities on more than 500 parameters to
find stocks that meet your search criteria.

Screen based on:

e Current Stock Price

e Price to Earnings Ratio

e Return on Equity

e Dividend Yield

e Anyitemona 10Q or 10k
e Earnings Per Share

e Sector

e Employee Count

https://appsource.microsoft.com/en-us/product/dynamics-365-business-central/PUBID.thetasystemslimited%7CAID.bc_excel_importer%7CPAPPID.24466323-aee9-4049-a66d-a1af24466323?tab=Overview

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

e And more than 500 more parameters...

The resulting list of stocks can be easily integrated with Intrinio’s free Excel add-in to analyze the data in a watch list,
DCF, or custom model. To use the screener you must visit Intrinio’s dashboard (https://data.intrinio.com) to obtain
your free APl username and password that will allow you to access the screener and Excel Add-In.

Facebook Ads Manager for Excel

Company: Facebook Inc
App Source:
Description: Facebook Ads Manager for Excel connects the power of Excel to your Facebook ad accounts.

Excel is a critical tool to analyze ad performance data, but exporting multiple Facebook accounts to an Excel
worksheet takes time and effort. With Facebook Ads Manager for Excel you can quickly run a single report to
download data from multiple ad accounts, helping you save time and work faster.

With Facebook Ads Manager for Excel users can:

1. Download rich performance data from your ad accounts. You can report on the performance of your
campaigns, ad sets, or ads and see breakdowns by demographics, actions taken on ads, or time. You can
also filter data based on date ranges, delivery status, ad objectives, placements and more.

2. Create a single report to download your ad performance data from multiple ad accounts. You don't need to
export reports from each of your ad accounts in Power Editor, and you don't need to be a developer or work
with a Facebook Marketing partner.

3. Create and save custom templates so that you can quickly run the reports you need. Or, use one of our pre-
set templates to get started.

Refresh the data in your reports as often as you need to, whether that's once a week or every 15 minutes.

5. Take your ad performance data and create your own analysis using Excel's pivot tables or other tools.

CONCLUSION

In this case study, a brief introduction about the Microsoft Office 365 Excel Web add-in, its architecture, development

& deployment ways & a demo of the introductory level is discussed in detail.

Our Microsoft Office 365 Consulting, add-in Development, Customization, Integration services, and solutions, can
help companies maximize business performance, overcoming market challenges, achieving profitability, and providing
the best customer care service.

https://appsource.microsoft.com/en-us/product/office/WA104380711?tab=Overview

Microsoft Office 365 Excel-Web Add-in - Consulting Practice

CONTACT US

Shahzad Sarwar

Cognitive Convergence Team

