

Microsoft Office 365 Excel - Web Add-in - Consulting Practice

Cognitive Convergence is Subject Matter Expert in

Office 365, Dynamics 365, SharePoint, Project Server,
Power Platform: Power Apps-Power BI-Power
Automate-Power Virtual Agents.
Our Microsoft Office 365 Consulting, add-in
Development, Customization, Integration services and
solutions, can help companies maximize business
performance, overcoming market challenges, achieving
profitability and providing best customer service.

CONTENTS

Objective ... 1

Introduction .. 1

Benefits of using excel add-in ... 1

Components of an Excel add-in ... 1

Capabilities of an Excel add-in .. 2

Add-in commands ... 2

Task panes .. 3

Custom functions ... 3

Dialog boxes .. 4

Content add-ins ... 5

Excel JavaScript API .. 5

Asynchronous nature of Excel APIs ... 6

Excel.run .. 6

Run options .. 7

Request context .. 7

Proxy objects .. 8

sync() .. 9

Load() .. 10

Word package ... 11

Functions ... 19

create the add-in.. 20

method 1 - Office 365 Excel web addin - Yeoman Generator – Visual Code 20

Prerequisites ... 20

Create the add-in project .. 20

Explore the project .. 21

Try it out ... 21

method 2 - Office 365 Excel web addin - Visual Studio 24

Prerequisites ... 24

Create the add-in project .. 24

Update the code .. 24

Update the manifest .. 27

Try it out ... 27

Deployment of Addin... 28

Centralized Deployment ... 28

Deploy on Web ... 31

Deploy on Desktop ... 31

How are Office Add-ins different from COM and VSTO add-ins?32

Examples of excel web add-in in appsource 33

Excel Importer .. 33

Intrinio Screener for Excel .. 33

Facebook Ads Manager for Excel .. 34

Conclusion .. 34

Contact Us... 35

1 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

OBJECTIVE

In this case study, a brief introduction will be discussed about the Microsoft Excel Web Add-in Practices, its basic

structure & architecture, components & the benefits of using the Excel web add-in

INTRODUCTION

An Excel add-in allows the users to extend Excel application functionality across multiple platforms including

Windows, Mac, iPad, and in a browser. Use Excel add-ins within a workbook to:

 Interact with Excel objects, read and write Excel data.

 Extend functionality using web-based task pane or content pane

 Add custom ribbon buttons or contextual menu items

 Add custom functions

 Provide richer interaction using a dialog window

BENEFITS OF USING EXCEL ADD-IN

The Office Add-ins platform provides the framework and Office.js JavaScript APIs that enable the users to create and

run Excel add-ins. By using the Office Add-ins platform to create the required Excel add-in, users will get the following

benefits:

 Cross-platform support: Excel add-ins run in Office on the web, Windows, Mac, and iPad.

 Centralized deployment: Admins can quickly and easily deploy Excel add-ins to users throughout an

organization.

 Use of standard web technology: Create your Excel add-in using familiar web technologies such as HTML,

CSS, and JavaScript.

 Distribution via AppSource: Share your Excel add-in with a broad audience by publishing it to AppSource.

COMPONENTS OF AN EXCEL ADD-IN

An Excel add-in includes two basic components: a web application and a configuration file called a manifest file.

The web application uses the Office JavaScript API to interact with objects in Excel, and can also facilitate interaction

with online resources. For example, an add-in can perform any of the following tasks:

 Create, read, update, and delete data in the workbook (worksheets, ranges, tables, charts, named items, and

more).

 Perform user authorization with an online service by using the standard OAuth 2.0 flow.

 Issue API requests to Microsoft Graph or any other API.

2 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

The web application can be hosted on any web server and can be built using client-side frameworks (such as Angular,

React, jQuery) or server-side technologies (such as ASP.NET, Node.js, PHP).

The manifest is an XML configuration file that defines how the add-in integrates with Office clients by specifying

settings and capabilities such as:

 The URL of the add-in's web application.

 The add-in's display name, description, ID, version, and default locale.

 How the add-in integrates with Excel, including any custom UI that the add-in creates (ribbon buttons,

context menus, and so on).

 Permissions that the add-in requires, such as reading and writing to the document.

To enable end-users to install and use an Excel add-in, you must publish its manifest either to AppSource or to an

add-ins catalog.

CAPABILITIES OF AN EXCEL ADD-IN

In addition to interacting with the content in the workbook, Excel add-ins can add custom ribbon buttons or menu

commands, insert task panes, add custom functions, open dialog boxes, and even embed rich, web-based objects

such as charts or interactive visualizations within a worksheet.

Add-in commands

Add-in commands are UI elements that extend the Excel UI and start actions in your add-in. You can use add-in

commands to add a button on the ribbon or an item to a context menu in Excel. When users select an add-in

command, they initiate actions such as running JavaScript code or showing a page of the add-in in a task pane.

3 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Task panes

Task panes are interface surfaces that typically appear on the right side of the window within Excel. Task panes give

users access to interface controls that run code to modify the Excel document or display data from a data source.

Custom functions

Custom functions enable developers to add new functions to Excel by defining those functions in JavaScript as part of

an add-in. Users within Excel can access custom functions just as they would any native function in Excel, such

as SUM().

4 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Dialog boxes

Dialog boxes are surfaces that float above the active Excel application window. You can use dialog boxes for tasks

such as displaying sign-in pages that can't be opened directly in a task pane, requesting that the user confirm an

action, or hosting videos that might be too small if confined to a task pane.

5 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Content add-ins

Content add-ins are surfaces that you can embed directly into Excel documents. You can use content add-ins to

embed rich, web-based objects such as charts, data visualizations, or media into a worksheet or to give users access

to interface controls that run code to modify the Excel document or display data from a data source. Use content

add-ins when you want to embed functionality directly into the document.

6 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

EXCEL JAVASCRIPT API

This part describes the core concepts that are fundamental to using the API and guides performing specific tasks such

as reading or writing to a large range, updating all cells in the range, and more.

Asynchronous nature of Excel APIs

The web-based Excel add-ins run inside a browser container that is embedded within the Office application on

desktop-based platforms such as Office on Windows and runs inside an HTML iFrame in Office on the web. Enabling

the Office.js API to interact synchronously with the Excel host across all supported platforms is not feasible due to

performance considerations. Therefore, the sync() API call in Office.js returns a promise that is resolved when the Excel

application completes the requested read or write actions.

Excel.run

Excel.run executes a function where you specify the actions to perform against the Excel object

model. Excel.run automatically creates a request context that you can use to interact with Excel objects.

When Excel.run completes, a promise is resolved, and any objects that were allocated at runtime are automatically

released. The following example shows how to use Excel.run. The catch statement catches and logs errors that occur

within the Excel.run.

7 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Run options

Excel.run has an overload that takes in a RunOptions object. This contains a set of properties that affect platform

behavior when the function runs. The following property is currently supported:

 delayForCellEdit: Determines whether Excel delays the batch request until the user exits cell edit mode.

When true, the batch request is delayed and runs when the user exits cell edit mode. When false, the batch

request automatically fails if the user is in cell edit mode (causing an error to reach the user). The default

behavior with no delayForCellEdit property specified is equivalent to when it is false.

Request context

Excel and the developed add-in run in two different processes. Since they both use different runtime environments,

Excel add-ins require a RequestContext object to connect the add-in to objects in Excel such as worksheets, ranges,

charts, and tables.

8 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

PROXY OBJECTS

The Excel JavaScript objects that users declare and use in an add-in are proxy objects. Any methods that user invoke

or properties that user set or load on proxy objects are simply added to a queue of pending commands. When users

call the sync() method on the request context (for example, context.sync()), the queued commands are dispatched to

Excel and run. The Excel JavaScript API is fundamentally batch-centric. Users can queue up as many changes as you

wish on the request context, and then call the sync() method to run the batch of queued commands.

For example, the following code snippet declares the local JavaScript object selected range to reference a selected

range in the Excel document and then sets some properties on that object. A selected range object is a proxy object,

so the properties that are set and method that is invoked on that object will not be reflected in the Excel document

until your add-in calls context.sync().

9 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

sync()

Calling the sync() method on the request context synchronizes the state between proxy objects and objects in the

Excel document. The sync() method runs any commands that are queued on the request context and retrieves values

for any properties that should be loaded on the proxy objects. The sync() method executes asynchronously and

returns a promise, which is resolved when the sync() method completes.

The following example shows a batch function that defines a local JavaScript proxy object (selectedRange), loads a

property of that object, and then uses the JavaScript Promises pattern to call context.sync() to synchronize the state

between proxy objects and objects in the Excel document.

10 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Load()

Before the reading properties of a proxy object, the user must explicitly load the properties to populate the proxy

object with data from the Excel document, and the For example, if the user creates a proxy object to reference a

selected range, and then want to read the selected range's address property, the user needs to load

the address property before the user can read it. To request properties of a proxy object be loaded, call

the load() method on the object and specify the properties to load.en call context.sync().

Just like requests to set properties or invoke methods on proxy objects, requests to load properties on proxy objects

get added to the queue of pending commands on the request context, which will run the next time when user call

the sync() method. Users can queue up as many loads () calls on the request context as necessary. In the following

example, only specific properties of the range are loaded.

11 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

WORD PACKAGE

Excel.Application
Represents the Excel application that manages the

workbook.

Excel.AutoFilter Represents the AutoFilter object. AutoFilter turns the values in

the Excel column into specific filters based on the cell contents.

Excel.Binding Represents an Office.js binding that is defined in the workbook.

Excel.BindingCollection Represents the collection of all the binding objects that are part

of the workbook.

Excel.CellValueConditionalFormat Represents a cell value conditional format.

Excel.Chart Represents a chart object in a workbook. To learn more about

the Chart object model, see Work with charts using the Excel

JavaScript API.

Excel.ChartAreaFormat Encapsulates the format properties for the overall chart area.

Excel.ChartAxes Represents the chart axes.

Excel.ChartAxis Represents a single axis in a chart.

Excel.ChartAxisFormat Encapsulates the format properties for the chart axis.

Excel.ChartAxisTitle Represents the title of a chart axis.

Excel.ChartAxisTitleFormat Represents the chart axis title formatting.

Excel.ChartBinOptions Encapsulates the bin options for histogram charts and Pareto

charts.

Excel.ChartBorder Represents the border formatting of a chart element.

Excel.ChartBoxwhiskerOptions Represents the properties of a box and whisker chart.

Excel.ChartCollection A collection of all the chart objects on a worksheet.

Excel.ChartDataLabel Represents the data label of a chart point.

Excel.ChartDataLabelFormat Encapsulates the format properties for the chart data labels.

Excel.ChartDataLabels Represents a collection of all the data labels on a chart point.

Excel.ChartErrorBars This object represents the attributes for a chart's error bars.

Excel.ChartErrorBarsFormat Encapsulates the format properties for chart error bars.

https://docs.microsoft.com/en-us/javascript/api/excel/excel.autofilter?view=excel-js-preview
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-charts
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-charts

12 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Excel.ChartFill Represents the fill formatting for a chart element.

Excel.ChartFont This object represents the font attributes (font name, font size,

color, etc.) for a chart object.

Excel.ChartFormatString Represents the substring in chart related objects that contain

text, like ChartTitle object, ChartAxisTitle object, etc.

Excel.ChartGridlines Represents major or minor gridlines on a chart axis.

Excel.ChartGridlinesFormat Encapsulates the format properties for chart gridlines.

Excel.ChartLegend Represents the legend in a chart.

Excel.ChartLegendEntry Represents the legendEntry in legendEntryCollection.

Excel.ChartLegendEntryCollection Represents a collection of legendEntries.

Excel.ChartLegendFormat Encapsulates the format properties of a chart legend.

Excel.ChartLineFormat Encapsulates the formatting options for line elements.

Excel.ChartMapOptions Encapsulates the properties for a region map chart.

Excel.ChartPivotOptions Encapsulates the options for the pivot chart.

Excel.ChartPlotArea This object represents the attributes for a chart plotArea object.

Excel.ChartPlotAreaFormat Represents the format properties for chart plotArea.

Excel.ChartPoint Represents a point of a series in a chart.

Excel.ChartPointFormat Represents formatting objects for chart points.

Excel.ChartPointsCollection A collection of all the chart points within a series inside a chart.

Excel.ChartSeries Represents a series in a chart.

Excel.ChartSeriesCollection Represents a collection of chart series.

Excel.ChartSeriesFormat Encapsulates the format properties for the chart series

Excel.ChartTitle Represents a chart title object of a chart.

Excel.ChartTitleFormat Provides access to the office art formatting for the chart title.

Excel.ChartTrendline This object represents the attributes for a chart trendline object.

13 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Excel.ChartTrendlineCollection Represents a collection of Chart Trendlines.

Excel.ChartTrendlineFormat Represents the format properties for chart trendline.

Excel.ChartTrendlineLabel This object represents the attributes for a chart trendline label

object.

Excel.ChartTrendlineLabelFormat Encapsulates the format properties for the chart trendline label.

Excel.ColorScaleConditionalFormat Represents ColorScale criteria for conditional formatting.

Excel.Comment Represents a comment in the workbook.

Excel.CommentCollection Represents a collection of comment objects that are part of the

workbook.

Excel.CommentReply Represents a comment reply in the workbook.

Excel.CommentReplyCollection Represents a collection of comment reply objects that are part

of the comment.

Excel.ConditionalDataBarNegativeFormat Represents a conditional format DataBar Format for the

negative side of the data bar.

Excel.ConditionalDataBarPositiveFormat Represents a conditional format DataBar Format for the

positive side of the data bar.

Excel.ConditionalFormat An object encapsulating a conditional format's range, format,

rule, and other properties. To learn more about the conditional

formatting object model, read Apply conditional formatting to

Excel ranges.

Excel.ConditionalFormatCollection Represents a collection of all the conditional formats that

overlap the range.

Excel.ConditionalFormatRule Represents a rule, for all traditional rule/format pairings.

Excel.ConditionalRangeBorder Represents the border of an object.

Excel.ConditionalRangeBorderCollection Represents the border objects that makeup range border.

Excel.ConditionalRangeFill Represents the background of a conditional range object.

Excel.ConditionalRangeFont This object represents the font attributes (font style, color, etc.)

for an object.

Excel.ConditionalRangeFormat A formatting object encapsulating the conditional formats

range's font, fill borders, and other properties.

Excel.CultureInfo Provides information based on current system culture settings.

This includes the culture names, number formatting, and other

culturally dependent settings.

Excel.CustomConditionalFormat Represents a custom conditional format type.

Excel.CustomProperty Represents a custom property.

https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-conditional-formatting
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-conditional-formatting

14 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Excel.CustomPropertyCollection Contains the collection of customProperty objects.

Excel.CustomXmlPart Represents a custom XML part object in a workbook.

Excel.CustomXmlPartCollection A collection of custom XML parts.

Excel.CustomXmlPartScopedCollection A scoped collection of custom XML parts. A scoped collection is

the result of some operation (e.g., filtering by namespace). A

scoped collection cannot be scoped any further.

Excel.DataBarConditionalFormat Represents an Excel Conditional Data Bar Type.

Excel.DataConnectionCollection Represents a collection of all the Data Connections that are

part of the workbook or worksheet.

Excel.DataPivotHierarchy Represents Excel DataPivotHierarchy.

Excel.DataPivotHierarchyCollection Represents a collection of DataPivotHierarchy items associated

with the PivotTable.

Excel.DataValidation Represents the data validation applied to the current range. To

learn more about the data validation object model, read Add

data validation to Excel ranges.

Excel.DatetimeFormatInfo Defines the culturally appropriate format of displaying

numbers. This is based on current system culture settings.

Excel.DocumentProperties Represents workbook properties.

Excel.Filter Manages the filtering of a table's column.

Excel.FilterPivotHierarchy Represents Excel FilterPivotHierarchy.

Excel.FilterPivotHierarchyCollection Represents a collection of FilterPivotHierarchy items associated

with the PivotTable.

Excel.FormatProtection Represents the format protection of a range object.

Excel.FunctionResult An object containing the result of a function-evaluation

operation

Excel.Functions An object for evaluating Excel functions.

Excel.GeometricShape Represents a geometric shape inside a worksheet. A geometric

shape can be a rectangle, block arrow, equation symbol,

flowchart item, star, banner, callout, or any other basic shape in

Excel.

Excel.GroupShapeCollection Represents the shape collection inside a shape group.

Excel.IconSetConditionalFormat Represents an IconSet criterion for conditional formatting.

Excel.Image Represents an image in the worksheet. To get the

corresponding Shape object, use Image.shape.

https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-data-validation
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-data-validation
https://docs.microsoft.com/en-us/javascript/api/excel/excel.datetimeformatinfo?view=excel-js-preview

15 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Excel.IterativeCalculation Represents the Iterative Calculation settings.

Excel.Line Represents a line inside a worksheet. To get the corresponding

Shape object, use Line.shape.

Excel.NamedItem Represents a defined name for a range of cells or values.

Names can be primitive named objects (as seen in the type

below), range object, or a reference to a range. This object can

be used to obtain a range object associated with names.

Excel.NamedItemArrayValues Represents an object containing values and types of a named

item.

Excel.NamedItemCollection A collection of all the NamedItem objects that are part of the

workbook or worksheet, depending on how it was reached.

Excel.NamedSheetView Represents a named sheet view of a worksheet. A sheet view

stores the sort and filter rules for a particular worksheet. Every

sheet view (even a temporary sheet view) has a unique,

worksheet-scoped name that is used to access the view.

Excel.NamedSheetViewCollection Represents the collection of sheet views on the worksheet.

Excel.NumberFormatInfo Defines the culturally appropriate format of displaying

numbers. This is based on current system culture settings.

Excel.PageLayout Represents layout and print settings that are not dependent on

any printer-specific implementation. These settings include

margins, orientation, page numbering, title rows, and print

area.

Excel.PivotField Represents Excel PivotField.

Excel.PivotFieldCollection Represents a collection of all the PivotFields that are part of a

PivotTable's hierarchy.

Excel.PivotHierarchy Represents Excel PivotHierarchy.

Excel.PivotHierarchyCollection Represents a collection of all the PivotHierarchies that are part

of the PivotTable.

Excel.PivotItem Represents Excel PivotItem.

Excel.PivotItemCollection Represents a collection of all the PivotItems related to their

parent PivotField.

Excel.PivotLayout Represents the visual layout of the PivotTable.

Excel.PivotTable Represents an Excel PivotTable. To learn more about the

PivotTable object model, read Work with PivotTables using the

Excel JavaScript API.

Excel.PivotTableCollection Represents a collection of all the PivotTables that are part of

the workbook or worksheet.

Excel.PivotTableScopedCollection Represents a scoped collection of PivotTables. The PivotTables

are sorted based on the location of the PivotTable's top-left

corner. They are ordered top to bottom and then left to right.

https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-pivottables
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-pivottables

16 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Excel.PivotTableStyle Represents a PivotTable Style, which defines style elements by

the PivotTable region.

Excel.PivotTableStyleCollection Represents a collection of PivotTable styles.

Excel.PresetCriteriaConditionalFormat Represents the preset criteria conditional format such as above

average, below average, unique values contains a blank,

nonblank, error, and no error.

Excel.Range The range represents a set of one or more contiguous cells

such as a cell, a row, a column, a block of cells, etc. To learn

more about how ranges are used throughout the API,

read Work with ranges using the Excel JavaScript API and Work

with ranges using the Excel JavaScript API (advanced).

Excel.RangeAreas RangeAreas represents a collection of one or more rectangular

ranges in the same worksheet. To learn how to use

discontiguous ranges, read Work with multiple ranges

simultaneously in Excel add-ins.

Excel.RangeAreasCollection Contains the collection of cross-worksheets level Ranges.

Excel.RangeBorder Represents the border of an object.

Excel.RangeBorderCollection Represents the border objects that make up the range border.

Excel.RangeFill Represents the background of a range object.

Excel.RangeFont This object represents the font attributes (font name, font size,

color, etc.) for an object.

Excel.RangeFormat A formatting object encapsulating the range's font, fill borders,

alignment, and other properties.

Excel.RangeSort Manages sorting operations on Range objects.

Excel.RangeView RangeView represents a set of visible cells of the parent range.

Excel.RangeViewCollection Represents a collection of RangeView objects.

Excel.RemoveDuplicatesResult Represents the results from the removeDuplicates method on a

range

Excel.RequestContext The RequestContext object facilitates requests to the Excel

application. Since the Office add-in and the Excel application

run in two different processes, the request context is required

to get access to the Excel object model from the add-in.

Excel.RowColumnPivotHierarchy Represents Excel RowColumnPivotHierarchy.

Excel.RowColumnPivotHierarchyCollection Represents a collection of RowColumnPivotHierarchy items

associated with the PivotTable.

Excel.Runtime Represents the Excel Runtime class.

https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-ranges
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-ranges-advanced
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-ranges-advanced
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-multiple-ranges
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-multiple-ranges

17 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Excel.Session Provides a connection session for a remote workbook.

Excel.Setting The setting represents a key-value pair of a setting persisted to

the document (per file per add-in). These custom key-value

pairs can be used to store state or lifecycle information needed

by the content or task-pane add-in. Note that settings are

persisted in the document and hence it is not a place to store

any sensitive or protected information such as user information

and password.

Excel.SettingCollection Represents a collection of key-value pair setting objects that

are part of the workbook. The scope is limited to per file and

add-in (task-pane or content) combination.

Excel.Shape Represents a generic shape object in the worksheet. A shape

could be a geometric shape, a line, a group of shapes, etc. To

learn more about the shape object model, read Work with

shapes using the Excel JavaScript API.

Excel.ShapeCollection Represents a collection of all the shapes in the worksheet.

Excel.ShapeFill Represents the fill formatting of a shape object.

Excel.ShapeFont Represents the font attributes, such as font name, font size, and

color, for a shape's TextRange object.

Excel.ShapeGroup Represents a shape group inside a worksheet. To get the

corresponding Shape object, use ShapeGroup.shape.

Excel.ShapeLineFormat Represents the line formatting for the shape object. For images

and geometric shapes, line formatting represents the border of

the shape.

Excel.Slicer Represents a slicer object in the workbook.

Excel.SlicerCollection Represents a collection of all the slicer objects on the workbook

or a worksheet.

Excel.SlicerItem Represents a slicer item in a slicer.

Excel.SlicerItemCollection Represents a collection of all the slicer item objects on the

slicer.

Excel.SlicerStyle Represents a Slicer Style, which defines style elements by

region of the slicer.

Excel.SlicerStyleCollection Represents a collection of SlicerStyle objects.

Excel.Style An object encapsulating a style's format and other properties.

Excel.StyleCollection Represents a collection of all the styles.

Excel.Table Represents an Excel table. To learn more about the table object

model, read Work with tables using the Excel JavaScript API.

Excel.TableCollection Represents a collection of all the tables that are part of the

workbook or worksheet, depending on how it was reached.

https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-shapes
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-shapes
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-tables

18 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Excel.TableColumn Represents a column in a table.

Excel.TableColumnCollection Represents a collection of all the columns that are part of the

table.

Excel.TableRow Represents a row in a table.

Note that unlike Ranges or Columns, which will adjust if new

rows/columns are added before them, a TableRow object

represents the physical location of the table row, but not the

data. That is, if the data is sorted or if new rows are added, a

table row will continue to point at the index for which it was

created.

Excel.TableRowCollection Represents a collection of all the rows that are part of the table.

Note that unlike Ranges or Columns, which will adjust if new

rows/columns are added before them, a TableRow object

represents the physical location of the table row, but not the

data. That is, if the data is sorted or if new rows are added, a

table row will continue to point at the index for which it was

created.

Excel.TableScopedCollection Represents a scoped collection of tables. For each table, its top-

left corner is considered its anchor location, and the tables are

sorted top to bottom and then left to right.

Excel.TableSort Manages sorting operations on Table objects.

Excel.TableStyle Represents a TableStyle, which defines the style elements by

region of the Table.

Excel.TableStyleCollection Represents a collection of TableStyles.

Excel.TextConditionalFormat Represents a specific text conditional format.

Excel.TextFrame Represents the text frame of a shape object.

Excel.TextRange Contains the text that is attached to a shape, in addition to

properties and methods for manipulating the text.

Excel.TimelineStyle Represents a Timeline style, which defines style elements by

region in the Timeline.

Excel.TimelineStyleCollection Represents a collection of TimelineStyles.

Excel.TopBottomConditionalFormat Represents a Top/Bottom conditional format.

Excel.Workbook The workbook is the top-level object which contains related

workbook objects such as worksheets, tables, ranges, etc. To

learn more about the workbook object model, read Work with

workbooks using the Excel JavaScript API.

Excel.WorkbookCreated The WorkbookCreated object is the top-level object created by

Application.CreateWorkbook. A WorkbookCreated object is a

special Workbook object.

https://docs.microsoft.com/en-us/javascript/api/excel/excel.textframe?view=excel-js-preview
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-workbooks
https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-workbooks

19 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Excel.WorkbookProtection Represents the protection of a workbook object.

Excel.WorkbookRangeAreas Represents a collection of one or more rectangular ranges in

multiple worksheets.

Excel.Worksheet An Excel worksheet is a grid of cells. It can contain data, tables,

charts, etc. To learn more about the worksheet object model,

read Work with worksheets using the Excel JavaScript API.

Excel.WorksheetCollection Represents a collection of worksheet objects that are part of

the workbook.

Excel.WorksheetCustomProperty Represents a worksheet-level custom property.

Excel.WorksheetCustomPropertyCollection Contains the collection of the worksheet-level custom property.

Excel.WorksheetProtection Represents the protection of a sheet object.

FUNCTIONS

Excel.createWorkbook(base64)

Creates and opens a new workbook. Optionally, the

workbook can be pre-populated with a base64-encoded .xlsx

file.

Excel.run(batch) Executes a batch script that performs actions on the Excel object model,

using a new RequestContext. When the promise is resolved, any tracked

objects that were automatically allocated during execution will be

released.

Excel.run(object, batch) Executes a batch script that performs actions on the Excel object model,

using the RequestContext of a previously-created API object. When the

promise is resolved, any tracked objects that were automatically

allocated during execution will be released.

Excel.run(objects, batch) Executes a batch script that performs actions on the Excel object model,

using the RequestContext of previously-created API objects.

Excel.run(options, batch) Executes a batch script that performs actions on the Excel object model,

using the RequestContext of a previously-created API object. When the

promise is resolved, any tracked objects that were automatically

allocated during execution will be released.

Excel.run(context, batch) Executes a batch script that performs actions on the Excel object model,

using the RequestContext of a previously-created object. When the

promise is resolved, any tracked objects that were automatically

allocated during execution will be released.

https://docs.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-worksheets

20 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

CREATE THE ADD-IN

Users can create an Office Add-in by using the Yeoman generator for Office Add-ins or Visual Studio. The Yeoman

generator creates a Node.js project that can be managed with Visual Studio Code or any other editor, whereas Visual

Studio creates a Visual Studio solution.

METHOD 1 - OFFICE 365 EXCEL WEB ADDIN - YEOMAN GENERATOR – VISUAL CODE

Prerequisites

1. Node.js (the latest LTS version)

2. The latest version of Yeoman and the Yeoman generator for Office Add-ins. To install these tools globally,

run the following command via the command prompt:

Create the add-in project

1. Run the following command to create an add-in project using the Yeoman generator:

2. When prompted, provide the following information to create your add-in project:

 Choose a project type: Office Add-in Task Pane project

 Choose a script type: Javascript

21 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

 What do you want to name your add-in? My Office Add-in

 Which Office client application would you like to support? Excel

After completing the wizard, the generator creates the project and installs supporting Node components.

Explore the project

The add-in project that the user has just created with the Yeoman generator contains sample code for a very basic

task pane add-in. To explore the components of the add-in project, open the project in the code editor, and review

the files listed below.

 The ./manifest.xml file in the root directory of the project defines the settings and capabilities of the add-in.

 The ./src/taskpane/taskpane.html file contains the HTML markup for the task pane.

 The ./src/taskpane/taskpane.css file contains the CSS that's applied to content in the task pane.

 The ./src/taskpane/taskpane.js file contains the Office JavaScript API code that facilitates interaction between

the task pane and the Office host application.

Try it out

1. Navigate to the root folder of the project.

22 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

2. Complete the following steps to start the local web server and sideload your add-in.

a. To test the add-in in Excel, run the following command in the root directory of the project. This

starts the local webserver (if it's not already running) and opens Word with the add-in loaded.

b. To test the add-in in Excel on a browser, run the following command in the root directory of the

project. When this command runs, the local web server will start (if it's not already running).

23 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

3. In Excel, choose the Home tab, and then choose the Show Taskpane button in the ribbon to open the add-in

task pane.

4. Select any range of cells in the worksheet.

5. At the bottom of the task pane, choose the Run link to set the color of the selected range to yellow.

24 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

METHOD 2 - OFFICE 365 EXCEL WEB ADDIN - VISUAL STUDIO

Prerequisites

a. Visual Studio 2019 with the Office/SharePoint development workload installed

b. Office 2016 or later

Create the add-in project

1. In Visual Studio, choose to Create a new project.

2. Using the search box, enter add-in. Choose Excel Web Add-in, then select Next.

3. Name your project and select Create.

4. In the Create Office Add-in dialog window, choose to Add new functionalities to Excel, and then choose

Finish to create the project.

5. Visual Studio creates a solution and its two projects appear in Solution Explorer. The Home.html file opens in

Visual Studio.

Update the code

1. Home.html specifies the HTML that will be rendered in the add-in's task pane. In Home.html, replace

the <body> element with the following markup and save the file.

25 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

2. Open the file Home.js at the root of the web application project. This file specifies the script for the add-in.

Replace the entire contents with the following code and save the file.

26 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

3. Open the file Home.css at the root of the web application project. This file specifies the custom styles for the

add-in. Replace the entire contents with the following code and save the file.

27 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

Update the manifest

1. Open the XML manifest file in the add-in project. This file defines the add-in's settings and capabilities.

2. The ProviderName element has a placeholder value. Replace it with your name.

3. The DefaultValue attribute of the DisplayName element has a placeholder. Replace it with My Office Add-in.

4. The DefaultValue attribute of the Description element has a placeholder. Replace it with A task pane add-in

for Excel.

5. Save the file.

Try it out

1. Using Visual Studio, test the newly created Excel add-in by pressing F5 or choosing the Start button to

launch Excel with the Show Taskpane add-in button displayed in the ribbon. The add-in will be hosted locally

on IIS.

2. In Excel, choose the Home tab, and then choose the Show Taskpane button in the ribbon to open the add-in

task pane.

28 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

3. Select any range of cells in the worksheet.

4. In the task pane, choose the Set color button to set the color of the selected range to green.

DEPLOYMENT OF ADDIN

There are multiple methods of deployment but we have followed the Centralized Deployment.

CENTRALIZED DEPLOYMENT

Follow steps below to publish an Office Add-in via Centralized Deployment:

1. Sign in to Microsoft 365 with your work or education account.

2. Select the app launcher icon in the upper-left and choose Admin.

3. In the navigation menu, press Show more, then choose Settings > Integrated apps.

4. Choose Add-ins at the top of the page

29 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

5. Choose Deploy Add-In at the top of the page.

6. Choose Next after reviewing the requirements.

7. Choose Upload Custom apps in the following page.

8. Click on Choose file and select Add-in manifest file (.xml)

9. Choose Upload at the end of the task pane

30 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

10. On the Assign Users page, choose Everyone, Specific Users/Groups, or Only me. Use the search box

to find the users and groups to whom you want to deploy the add-in.

31 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

11. When finished, choose Deploy. This process may take up to three minutes. Then, finish the walkthrough

by pressing Next.

DEPLOY ON WEB

Now the add-in has been deployed in your tenant and you can test it on Excel web application following steps below:

1) Open a new blank document in Excel web application

2) Go to Insert tab

3) Choose Office Add-ins in top navigation

4) Choose Admin managed in the top of Office Add-ins modal

5) Select your deployed add-in from the list

6) Choose Add at the end of the modal

DEPLOY ON DESKTOP

You can test the solution on desktop Excel application by following the steps below:

1) Open a new blank document in desktop Excel application

2) Select File > Account

3) If you're not already signed in, click Sign In, else choose Switch account

4) Choose Sign-in with a different account

32 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

5) Provide login credentials of Office account on which add-in has been deployed in Office 365

6) Follow the steps 2 to 6 from heading “Test on Web”

HOW ARE OFFICE ADD-INS DIFFERENT FROM COM AND VSTO ADD-INS?

COM or VSTO add-ins are earlier Office integration solutions that run only on Office on Windows. Unlike COM

add-ins, Office Add-ins don't involve code that runs on the user's device or in the Office client. For an Office Add-

in, the host application, for example, Excel, reads the add-in manifest and hooks up the add-in’s custom ribbon

buttons and menu commands in the UI. When needed, it loads the add-in's JavaScript and HTML code, which

executes in the context of a browser in a sandbox.

Office Add-ins provide the following advantages over add-ins built using VBA, COM, or VSTO:

 Cross-platform support. Office Add-ins run in Office on the web, Windows, Mac, and iPad.

 Centralized deployment and distribution. Admins can deploy Office Add-ins centrally across an

organization.

 Easy access via AppSource. You can make your solution available to a broad audience by submitting it to

AppSource.

 Based on standard web technology. You can use any library you like to build Office Add-ins.

33 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

EXAMPLES OF EXCEL WEB ADD-IN IN APPSOURCE

Excel Importer

Company: Theta Systems Limited

App Source: URL

Description: Features and benefits of using this extension

 Import journals, sales and purchase orders/invoices, sales and vendor prices.

 Import Item Journals with item tracking information (lot and serial number)

 Flexible field mapping to suite column layouts of source data.

 Ability to apply default values to fields which are not present in the source data. For example, defaulting a

quantity or defaulting dimensions specific to the import.

 Ability to translate source data values to correct accounts and dimensions in Business Central. Examples

include:

o Text string to a combination of accounts and dimensions and VAT/GST posting groups.

o Old G/L Account, Customer or Vendor numbers to new numbers.

Intrinio Screener for Excel

Company: Intrinio

App Source: URL

Description: Intrinio Screener for Excel allows you to filter all United States equities on more than 500 parameters to

find stocks that meet your search criteria.

Screen based on:

 Current Stock Price

 Price to Earnings Ratio

 Return on Equity

 Dividend Yield

 Any item on a 10Q or 10k

 Earnings Per Share

 Sector

 Employee Count

https://appsource.microsoft.com/en-us/product/dynamics-365-business-central/PUBID.thetasystemslimited%7CAID.bc_excel_importer%7CPAPPID.24466323-aee9-4049-a66d-a1af24466323?tab=Overview

34 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

 And more than 500 more parameters…

The resulting list of stocks can be easily integrated with Intrinio’s free Excel add-in to analyze the data in a watch list,

DCF, or custom model. To use the screener you must visit Intrinio’s dashboard (https://data.intrinio.com) to obtain

your free API username and password that will allow you to access the screener and Excel Add-In.

Facebook Ads Manager for Excel

Company: Facebook Inc

App Source: URL

Description: Facebook Ads Manager for Excel connects the power of Excel to your Facebook ad accounts.

Excel is a critical tool to analyze ad performance data, but exporting multiple Facebook accounts to an Excel

worksheet takes time and effort. With Facebook Ads Manager for Excel you can quickly run a single report to

download data from multiple ad accounts, helping you save time and work faster.

With Facebook Ads Manager for Excel users can:

1. Download rich performance data from your ad accounts. You can report on the performance of your

campaigns, ad sets, or ads and see breakdowns by demographics, actions taken on ads, or time. You can

also filter data based on date ranges, delivery status, ad objectives, placements and more.

2. Create a single report to download your ad performance data from multiple ad accounts. You don't need to

export reports from each of your ad accounts in Power Editor, and you don't need to be a developer or work

with a Facebook Marketing partner.

3. Create and save custom templates so that you can quickly run the reports you need. Or, use one of our pre-

set templates to get started.

4. Refresh the data in your reports as often as you need to, whether that's once a week or every 15 minutes.

5. Take your ad performance data and create your own analysis using Excel's pivot tables or other tools.

CONCLUSION

In this case study, a brief introduction about the Microsoft Office 365 Excel Web add-in, its architecture, development

& deployment ways & a demo of the introductory level is discussed in detail.

Our Microsoft Office 365 Consulting, add-in Development, Customization, Integration services, and solutions, can

help companies maximize business performance, overcoming market challenges, achieving profitability, and providing

the best customer care service.

https://appsource.microsoft.com/en-us/product/office/WA104380711?tab=Overview

35 Microsoft Office 365 Excel-Web Add-in - Consulting Practice

CONTACT US

Shahzad Sarwar

Cognitive Convergence Team

