

Microsoft Office 365 Outlook - Web Add-in - Consulting Practice

Cognitive Convergence is Subject Matter Expert in

Office 365, Dynamics 365, SharePoint, Project Server,
Power Platform: Power Apps-Power BI-Power Automate-
Power Virtual Agents.
Our Microsoft Office 365 Consulting, add-in Development,
Customization, Integration services and solutions, can help
companies maximize business performance, overcoming
market challenges, achieving profitability and providing
best customer service.

1 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

CONTENTS

Objective ... 3

MS Outlook add-in .. 3

Components of an Office Add-in ... 3

Manifest ... 3

Web app .. 4

Extension points .. 4

Mailbox items available to add-ins ... 5

Supported hosts .. 6

Outlook Web Add-in Object Model - Code level Architecture ... 6

Create the Add-in .. 10

method 1 - Office 365 word web addin - Yeoman Generator – Visual Code 11

Prerequisites ... 11

Create the add-in project .. 11

Explore the project .. 12

Update the code .. 12

Try it out ... 13

method 2 - Office 365 Outlook web addin - Visual Studio 15

Prerequisites ... 15

Create the add-in project .. 15

Explore the Visual Studio solution .. 15

Update the code .. 15

Update the manifest .. 17

Try it out ... 18

Deployment of Addin... 20

Centralized Deployment ... 20

2 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

How are Office Add-ins different from COM and VSTO add-ins?23

Examples of Outlook Web add-in in App source 23

PayPal for Outlook ... 23

Translator for Outlook .. 24

Jira for Outlook .. 25

Conclusion .. 26

Contact Us... 26

3 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

OBJECTIVE

This case study is a brief introduction about the core concept of MS-Outlook Web Add-in, its fundamentals, building

architecture & its development tracks.

MS OUTLOOK ADD-IN

Outlook add-ins are integrations built by third parties into Outlook by using our web-based platform. Outlook add-

ins have three key aspects:

 The same add-in and business logic work across desktop (Outlook on Windows and Mac), web (Microsoft

365 and Outlook.com), and mobile.

 Outlook add-ins consist of a manifest, which describes how the add-in integrates into Outlook (for example,

a button or a task pane), and JavaScript/HTML code, which makes up the UI and business logic of the add-in.

 Outlook add-ins can be acquired from AppSource or sideloaded by end-users or administrators.

Outlook add-ins are different from COM or VSTO add-ins, which are older integrations specific to Outlook running on

Windows. Unlike COM add-ins, Outlook add-ins don't have any code physically installed on the user's device or

Outlook client. For an Outlook add-in, Outlook reads the manifest and hooks up the specified controls in the UI and

then loads the JavaScript and HTML. The web components all run in the context of a browser in a sandbox.

The Outlook items that support add-ins include email messages, meeting requests, responses and cancellations, and

appointments. Each Outlook add-in defines the context in which it is available, including the types of items and if the

user is reading or composing an item.

COMPONENTS OF AN OFFICE ADD-IN

An Office Add-in includes two basic components: an XML manifest file,

and a user’s web application. The manifest defines various settings,

including how your add-in integrates with Office clients. User’s web

application needs to be hosted on a web server, or web hosting service,

such as Microsoft Azure.

Manifest

The manifest is an XML file that specifies settings and capabilities of the

add-in, such as:

 The add-in's display name, description, ID, version, and default

locale.

 How the add-in integrates with Office.

 The permission level and data access requirements for the add-in.

4 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

Web app

The most basic Office Add-in consists of a static HTML page that is displayed inside an Office application, but that

doesn't interact with either the Office document or any other Internet resource. However, to create an experience that

interacts with Office documents or allows the user to interact with online resources from an Office host application,

the user can use any technologies, both client and server-side, that the hosting provider supports (such as ASP.NET,

PHP, or Node.js). To interact with Office clients and documents, the user uses the Office.js JavaScript APIs.

EXTENSION POINTS

Extension points are the ways that add-ins integrate with Outlook. The following are the ways this can be done:

 Add-ins can declare buttons that appear in command surfaces across messages and appointments.

5 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

 Add-ins can link off regular expression matches or detected entities in messages and appointments

MAILBOX ITEMS AVAILABLE TO ADD-INS

Outlook add-ins are available on messages or appointments while composing or reading, but not other item types.

Outlook does not activate add-ins if the current message item, in a compose or read form, is one of the following:

Protected by Information Rights Management (IRM) or encrypted in other ways for protection. A digitally signed

message is an example since digital signing relies on one of these mechanisms.

 A delivery report or notification that has the message class IPM.Report.*, including delivery and Non-Delivery

Report (NDR) reports, and read, non-read, and delay notifications.

 A draft (does not have a sender assigned to it), or in the Outlook Drafts folder.

 A .msg or .eml file which is an attachment to another message.

 A .msg or .eml file opened from the file system.

 In a shared mailbox, in another user's mailbox, in an archive mailbox, or a public folder.

 Using a custom form.

In general, Outlook can activate add-ins in reading form for items in the Sent Items folder, except for add-ins that

activate based on string matches of well-known entities.

6 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

SUPPORTED HOSTS

Outlook add-ins are supported in Outlook 2013 or later on Windows, Outlook 2016 or later on Mac, Outlook on the

web for Exchange 2013 on-premises and the later versions, Outlook on iOS, Outlook on Android, and Outlook on the

web and Outlook.com. Not all of the newest features are supported in all clients at the same time.

OUTLOOK WEB ADD-IN OBJECT MODEL - CODE LEVEL ARCHITECTURE

Office.Appointment The subclass of Item dealing with appointments.

Important: This is an internal Outlook object, not directly exposed through

existing interfaces. You should treat this as a mode

of Office.context.mailbox.item. Refer to the Object Model page for more

information.

Child interfaces:

 AppointmentCompose

 AppointmentRead

Office.AppointmentCompose The appointment organizer mode of Office.context.mailbox.item.

Important: This is an internal Outlook object, not directly exposed through

existing interfaces. You should treat this as a mode

of Office.context.mailbox.item. Refer to the Object Model page for more

information.

Parent interfaces:

 ItemCompose

 Appointment

Office.AppointmentForm The AppointmentForm object is used to access the currently selected

appointment.

Office.AppointmentRead The appointment attendee mode of Office.context.mailbox.item.

Important: This is an internal Outlook object, not directly exposed through

existing interfaces. You should treat this as a mode

of Office.context.mailbox.item. Refer to the Object Model page for more

information.

Parent interfaces:

 ItemRead

 Appointment

Office.AppointmentTimeChanged

EventArgs

Provides the current dates and times of the appointment that raised

the Office.EventType.AppointmentTimeChanged event.

Office.AttachmentContent Represents the content of an attachment on a message or appointment item.

Office.AttachmentDetails Represents an attachment on an item from the server. Read mode only.

An array of AttachmentDetails objects is returned as the attachments property

of an appointment or message item.

Office.AttachmentDetailsCompos

e

Represents an attachment on an item. Compose mode only.

An array of AttachmentDetailsCompose objects is returned as the attachments

property of an appointment or message item.

Office.AttachmentsChangedEvent

Args

Provides information about the attachments that raised

the Office.EventType.AttachmentsChanged event.

7 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

Office.Body The body object provides methods for adding and updating the content of the

message or appointment. It is returned in the body property of the selected

item.

Office.Categories Represents the categories on an item.

In Outlook, a user can tag messages and appointments by using a category to

color-code them. The user defines categories in a master list in their mailbox.

They can then apply one or more categories to an item.

Important: In Outlook on the web, you can't use the API to manage categories

applied to a message in Compose mode.

Office.CategoryDetails Represents a category's details like name and associated color.

Office.CoercionTypeOptions Provides an option for the data format.

Office.Contact Represents the details about a contact (similar to what's on a physical contact

or business card) extracted from the item's body. Read mode only.

The list of contacts extracted from the body of an email message or

appointment is returned in the contacts property of the Entities object returned

by the getEntities or getEntitiesByType method of the current item.

Office.CustomProperties The CustomProperties object represents custom properties that are specific to a

particular item and specific to a mail add-in for Outlook. For example, there

might be a need for a mail add-in to save some data that is specific to the

current email message that activated the add-in. If the user revisits the same

message in the future and activates the mail add-in again, the add-in will be

able to retrieve the data that had been saved as custom properties. Important:

The maximum length of a CustomProperties JSON object is 2500 characters.

Because Outlook on Mac doesn't cache custom properties, if the user's network

goes down, mail add-ins cannot access their custom properties.

Office.Diagnostics Provides diagnostic information to an Outlook add-in.

Office.EmailAddressDetails Provides the email properties of the sender or specified recipients of an email

message or appointment.

Office.EmailUser Represents an email account on an Exchange Server.

Office.EnhancedLocation Represents the set of locations on an appointment.

Office.EnhancedLocationsChange

dEventArgs

Provides the current enhanced locations when

the Office.EventType.EnhancedLocationsChanged event is raised.

Office.Entities Represents a collection of entities found in an email message or appointment.

Read mode only.

The Entities object is a container for the entity arrays returned by

the getEntities and getEntitiesByType methods when the item (either an email

message or an appointment) contains one or more entities that have been

found by the server. You can use these entities in your code to provide

additional context information to the viewer, such as a map to an address

found in the item, or to open a dialer for a phone number found in the item.

If no entities of the type specified in the property are present in the item, the

property associated with that entity is null. For example, if a message contains a

street address and a phone number, the addresses property and

phoneNumbers property would contain information, and the other properties

would be null.

To be recognized as an address, the string must contain a United States postal

address that has at least a subset of the elements of a street number, street

name, city, state, and zip code.

To be recognized as a phone number, the string must contain a North

American phone number format.

Entity recognition relies on natural language recognition that is based on

machine learning of large amounts of data. The recognition of an entity is non-

8 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

deterministic and success sometimes relies on the particular context in the

item.

When the property arrays are returned by the getEntitiesByType method, only

the property for the specified entity contains data; all other properties are null.

Office.From Provides a method to get the from the value of a message in an Outlook add-

in.

Office.InternetHeaders The InternetHeaders object represents custom internet headers that are

preserved after the message item leaves Exchange and is converted to a MIME

message. These headers are stored as x-headers in the MIME message.

Internet headers are stored as key/value pairs on a per-item basis.

Note: This object is intended for the users to set and get the custom headers

on a message item.

Office.IsAllDayEvent Provides methods to get and set the all-day event status of a meeting in an

Outlook add-in.

Office.Item The item namespace is used to access the currently selected message, meeting

request, or appointment. You can determine the type of the item by using

the itemType property.

Office.ItemCompose The compose mode of Office.context.mailbox.item.

Important: This is an internal Outlook object, not directly exposed through

existing interfaces. You should treat this as a mode

of Office.context.mailbox.item

Child interfaces:

 AppointmentCompose

 MessageCompose

Office.ItemRead The read mode of Office.context.mailbox.item.

Important: This is an internal Outlook object, not directly exposed through

existing interfaces. You should treat this as a mode

of Office.context.mailbox.item. Refer to the Object Model page for more

information.

Child interfaces:

 AppointmentRead

 MessageRead

Office.LocalClientTime Represents a date and time in the local client's time zone. Read mode only.

Office.Location Provides methods to get and set the location of a meeting in an Outlook add-

in.

Office.LocationDetails Represents a location. Read-only.

Office.LocationIdentifier Represents the ID of a location.

Office.Mailbox Provides access to the Microsoft Outlook add-in object model.

Key properties:

 diagnostics: Provides diagnostic information to an Outlook add-in.

 item: Provides methods and properties for accessing a message or

appointment in an Outlook add-in.

 userProfile: Provides information about the user in an Outlook add-in.

Office.MasterCategories Represents the categories master list on the mailbox.

In Outlook, a user can tag messages and appointments by using a category to

color-code them. The user defines categories in a master list in their mailbox.

9 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

They can then apply one or more categories to an item.

Important: In delegate or shared scenarios, the delegate can get the categories

in the master list but can't add or remove categories.

Office.MeetingSuggestion Represents a suggested meeting found in an item. Read mode only.

The list of meetings suggested in an email message is returned in

the meetingSuggestions property of the Entities object that is returned when

the getEntities or getEntitiesByType method is called on the active item.

The start and end values are string representations of a Date object that

contains the date and time at which the suggested meeting is to begin and

end. The values are in the default time zone specified for the current user.

Office.Message A subclass of Item for messages.

Important: This is an internal Outlook object, not directly exposed through

existing interfaces. You should treat this as a mode

of Office.context.mailbox.item.

Office.MessageCompose The message composes mode of Office.context.mailbox.item.

Important: This is an internal Outlook object, not directly exposed through

existing interfaces. You should treat this as a mode

of Office.context.mailbox.item.

Office.MessageRead The message read mode of Office.context.mailbox.item.

Important: This is an internal Outlook object, not directly exposed through

existing interfaces. You should treat this as a mode

of Office.context.mailbox.item.

Office.NotificationMessageAction The definition of the action for a notification message.

Office.NotificationMessageDetail

s

An array of NotificationMessageDetails objects are returned by

the NotificationMessages.getAllAsync method.

Office.NotificationMessages The NotificationMessages object is returned as

the notificationMessages property of an item.

Office.OfficeThemeChangedEvent

Args

Provides the updated Office theme that raised

the Office.EventType.OfficeThemeChanged event.

Office.Organizer Represents the appointment organizer, even if an alias or a delegate was used

to create the appointment. This object provides a method to get the organizer

value of an appointment in an Outlook add-in.

Office.PhoneNumber Represents a phone number identified in an item. Read mode only.

An array of PhoneNumber objects containing the phone numbers found in an

email message is returned in the phoneNumbers property of the Entities object

that is returned when you call the getEntities method on the selected item.

Office.Recipients Represents recipients of an item. Compose mode only.

Office.RecipientsChangedEventAr

gs

Provides change status of recipients fields when

the Office.EventType.RecipientsChanged event is raised.

Office.RecipientsChangedFields Represents RecipientsChangedEventArgs.changedRecipientFields object.

Office.Recurrence The Recurrence object provides methods to get and set the recurrence pattern

of appointments but only get the recurrence pattern of meeting requests. It will

have a dictionary with the following

keys: seriesTime, recurrenceType, recurrenceProperties,

and recurrenceTimeZone (optional).

Office.RecurrenceChangedEventA

rgs

Provides updated recurrence object that raised

the Office.EventType.RecurrenceChanged event.

Office.RecurrenceProperties Represents the properties of the recurrence.

Office.RecurrenceTimeZone Represents the time zone of the recurrence.

Office.ReplyFormAttachment A file or item attachment. Used when displaying a reply form.

Office.ReplyFormData A ReplyFormData object that contains body or attachment data and a callback

10 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

function. Used when displaying a reply form.

Office.RoamingSettings The settings created by using the methods of the RoamingSettings object are

saved per add-in and user. That is, they are available only to the add-in that

created them, and only from the user's mailbox in which they are saved.

While the Outlook Add-in API limits access to these settings to only the add-in

that created them, these settings should not be considered secure storage.

They can be accessed by Exchange Web Services or Extended MAPI. They

should not be used to store sensitive information such as user credentials or

security tokens.

The name of a setting is a String, while the value can be a String, Number,

Boolean, null, Object, or Array.

The RoamingSettings object is accessible via the roamingSettings property in

the Office.context namespace.

Important: The RoamingSettings object is initialized from the persisted storage

only when the add-in is first loaded. For task panes, this means that it is only

initialized when the task pane first opens. If the task pane navigates to another

page or reloads the current page, the in-memory object is reset to its initial

values, even if your add-in has persisted changes. The persisted changes will

not be available until the task pane (or item in the case of UI-less add-ins) is

closed and reopened.

Office.Sensitivity Provides methods to get and set the appointment sensitivity of a meeting in an

Outlook add-in.

Office.SeriesTime The SeriesTime object provides methods to get and set the dates and times of

appointments in a recurring series and get the dates and times of meeting

requests in a recurring series.

Office.SessionData Provides methods to manage an item's session data.

Office.SharedProperties Represents the properties of an appointment or message in a shared folder,

mailbox, or calendar.

Office.Subject Provides methods to get and set the subject of an appointment or message in

an Outlook add-in.

Office.TaskSuggestion Represents a suggested task identified in an item. Read mode only.

The list of tasks suggested in an email message is returned in

the taskSuggestions property of the Entities object that is returned when

the getEntities or getEntitiesByType method is called on the active item.

Office.Time The Time object is returned as the start or end property of an appointment in

compose mode.

Office.UserProfile Information about the user associated with the mailbox. This includes their

account type, display name, email address, and time zone.

CREATE THE ADD-IN

Users can create an Office Add-in by using the Yeoman generator for Office Add-ins or Visual Studio. The Yeoman

generator creates a Node.js project that can be managed with Visual Studio Code or any other editor, whereas Visual

Studio creates a Visual Studio solution.

11 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

METHOD 1 - OFFICE 365 WORD WEB ADDIN - YEOMAN GENERATOR – VISUAL CODE

Prerequisites

1. Node.js (the latest LTS version)

2. The latest version of Yeoman and the Yeoman generator for Office Add-ins. To install these tools globally,

run the following command via the command prompt:

Create the add-in project

Run the following command to create an add-in project using the Yeoman generator:

When prompted, provide the following information to create your add-in project:

1. Choose a project type: Office Add-in Task Pane project

2. Choose a script type: JavaScript

3. What do you want to name your add-in? My Office Add-in

12 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

4. Which Office client application would you like to support? Outlook

After completing the wizard, the generator creates the project and installs supporting Node components.

Explore the project

The add-in project that the user has just created with the Yeoman generator contains sample code for a very basic

task pane add-in. To explore the components of the add-in project, open the project in the code editor, and review

the files listed below.

 The ./manifest.xml file in the root directory of the project defines the settings and capabilities of the add-in.

 The ./src/taskpane/taskpane.html file contains the HTML markup for the task pane.

 The ./src/taskpane/taskpane.css file contains the CSS that's applied to content in the task pane.

 The ./src/taskpane/taskpane.js file contains the Office JavaScript API code that facilitates interaction between

the task pane and the Office host application.

Update the code

1. In the code editor, open the file ./src/taskpane/taskpane.html and replace the entire <main> element

(within the <body> element) with the following markup. This new markup adds a label where the script

in ./src/taskpane/taskpane.js will write data.

13 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

2. In the code editor, open the file ./src/taskpane/taskpane.js and add the following code within

the run function. This code uses the Office JavaScript API to get a reference to the current message and write

its subject property value to the task pane.

Try it out

1. Run the following command in the root directory of your project. When you run this command, the local

web server will start (if it's not already running).

2. In Outlook, select or open a message.

3. Choose the Home tab (or the Message tab if you opened the message in a new window), and then choose

the Show Taskpane button in the ribbon to open the add-in task pane.

14 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

4. Scroll to the bottom of the task pane and choose the Run link to write the message subject to the task pane.

15 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

METHOD 2 - OFFICE 365 OUTLOOK WEB ADDIN - VISUAL STUDIO

Prerequisites

a. Visual Studio 2019 with the Office/SharePoint development workload installed

b. Office 2016 or later

Create the add-in project

1. In Visual Studio, choose Create a new project.

2. Using the search box, enter add-in. Choose Outlook Web Add-in, then select Next.

3. Name your project and select Create.

4. Visual Studio creates a solution and its two projects appear in Solution Explorer.

5. The MessageRead.html file opens in Visual Studio.

Explore the Visual Studio solution

After completing the wizard, Visual Studio creates a solution that contains two projects.

Project Description

Add-in project Contains only an XML manifest file, which contains all the settings that describe the add-in.

These settings help the Office host determine when the add-in should be activated and where

the add-in should appear. Visual Studio generates the contents of this file for you so that the

user can run the project and use the add-in immediately. user change these settings any time

by modifying the XML file.

Web application

project

Contains the content pages of your add-in, including all the files and file references that are

required to develop Office-aware HTML and JavaScript pages. While developing the add-in,

Visual Studio hosts the web application on the user’s local IIS server.

Update the code

16 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

1. MessageRead.html specifies the HTML that will be rendered in the add-in's task pane.

In MessageRead.html, replace the <body> element with the following markup and save the file.

2. Open the file MessageRead.js at the root of the web application project. This file specifies the script for the

add-in. Replace the entire contents with the following code and save the file.

17 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

3. Open the file MessageRead.css in the root of the web application project. This file specifies the custom

styles for the add-in. Replace the entire contents with the following code and save the file.

Update the manifest

1. Open the XML manifest file in the Add-in project. This file defines the add-in's settings and capabilities.

2. The ProviderName element has a placeholder value. Replace it with your name.

3. The DefaultValue attribute of the DisplayName element has a placeholder. Replace it with My Office Add-in.

4. The DefaultValue attribute of the Description element has a placeholder. Replace it with My First Outlook

add-in.

5. Save the file.

18 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

Try it out

1. Using Visual Studio, test the newly created Outlook add-in by pressing F5 or choosing the Start button. The

add-in will be hosted locally on IIS.

2. In the Connect to Exchange email account dialog box, enter the email address and password for

the Microsoft account and then choose Connect. When the Outlook.com login page opens in a browser,

sign in to your email account with the same credentials as you entered previously.

3. In Outlook on the web, select or open a message.

4. Within the message, locate the ellipsis for the overflow menu containing the add-in's button.

5. Within the overflow menu, locate the add-in's button.

19 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

6. Click the button to open the add-in's task pane.

20 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

DEPLOYMENT OF ADDIN

There are multiple methods of deployment but we have followed the Centralized Deployment.

CENTRALIZED DEPLOYMENT

Follow steps below to publish an Office Add-in via Centralized Deployment:

1. Sign in to Microsoft 365 with your work or education account.

2. Select the app launcher icon in the upper-left and choose Admin.

3. In the navigation menu, press Show more, then choose Settings > Integrated apps.

4. Choose Add-ins at the top of the page

5. Choose Deploy Add-In at the top of the page.

6. Choose Next after reviewing the requirements.

7. Choose Upload Custom apps in the following page

21 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

8. Click on Choose file and select Add-in manifest file (.xml)

9. Choose Upload at the end of the task pane

10. On the Assign Users page, choose Everyone, Specific Users/Groups, or Only me. Use the search box

to find the users and groups to whom you want to deploy the add-in.

22 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

11. When finished, choose Deploy. This process may take up to three minutes. Then, finish the walkthrough

by pressing Next.

23 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

HOW ARE OFFICE ADD-INS DIFFERENT FROM COM AND VSTO ADD-INS?

COM or VSTO add-ins are earlier Office integration solutions that run only on Office on Windows. Unlike COM

add-ins, Office Add-ins don't involve code that runs on the user's device or in the Office client. For an Office Add-

in, the host application, for example, Excel, reads the add-in manifest and hooks up the add-in’s custom ribbon

buttons and menu commands in the UI. When needed, it loads the add-in's JavaScript and HTML code, which

executes in the context of a browser in a sandbox.

Office Add-ins provide the following advantages over add-ins built using VBA, COM, or VSTO:

 Cross-platform support. Office Add-ins run in Office on the web, Windows, Mac, and iPad.

 Centralized deployment and distribution. Admins can deploy Office Add-ins centrally across an

organization.

 Easy access via AppSource. You can make your solution available to a broad audience by submitting it to

AppSource.

 Based on standard web technology. You can use any library you like to build Office Add-ins.

EXAMPLES OF OUTLOOK WEB ADD-IN IN APP SOURCE

PayPal for Outlook

Company: PayPal Inc

AppSource URL: link

https://appsource.microsoft.com/en-us/product/office/WA104379615?tab=Overview

24 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

Description: PayPal for Outlook provides the facility of sending money using the email address. When this add-in is

used, it Can send data over the Internet. This add-in can access and modify personal information in the active

message, such as the body, subject, sender, recipients, and attachment information. It may send this data to a third-

party service. Other items in your mailbox can’t be read or modified.

Translator for Outlook

Company: Microsoft Corporation

AppSource URL: link

Description: Translator provides a simple way to translate and read messages in the preferred language, across

devices.

 Install once and use across devices. Enable Translator once, and use across all the devices, with Outlook for

iOS, Mac, Windows, Office 365 & Outlook.com. (Coming soon to Android.)

 Translate seamlessly. Don’t switch between apps to get a translation; see a fully translated view of the

message with a tap of a button

https://appsource.microsoft.com/en-us/product/office/WA104380627?tab=Overview

25 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

Jira for Outlook

Company: yasoon GmbH

AppSource URL: link.

Description: Jira for Outlook eases your workflow with many features:

 Create and update issues without leaving Outlook: Take over email attachments and text formatting like lists,

colors and tables

 Get Jira context for emails: View related issues for the same conversation or sender in a separate sidebar

 Fully integrated with Jira Service Desk: Create tickets on behalf of existing Service Desk users or create a new

user for the sender of the email

 Be efficient on all your devices: Use all advantages of Jira on the go (Runs on Outlook for Windows, iOS, Mac

and Web)

https://appsource.microsoft.com/en-us/product/office/WA104381095?tab=Overview

26 Microsoft Office 365 Outlook-Web Add-in - Consulting Practice

CONCLUSION

In this case study, a brief introduction about the Microsoft Office 365 Outlook Web add-in, its architecture,

development & deployment ways & a demo of the introductory level is discussed in detail.

Our Microsoft Office 365 Consulting, add-in Development, Customization, Integration services, and solutions, can

help companies maximize business performance, overcoming market challenges, achieving profitability, and providing

the best customer care service.

CONTACT US

Shahzad Sarwar

Cognitive Convergence Team

